

**Report on Supplementary Contamination Investigation** 

**Proposed Multi-Purpose School Hall** 

Sutherland Public School 38-54 and 66 Eton Street, Sutherland NSW

**Prepared for School Infrastructure NSW** 

**Project 224456.00** 

**13 January 2025** 



# **Document History**

# **Details**

**Project No.** 224456.00

**Document Title** Report on Supplementary Contamination Investigation

Site Address
Sutherland Public School

38-54 and 66 Eton Street, Sutherland NSW

Report Prepared For School Infrastructure NSW

**Filename** 224456.00.R.003.Revl

# **Status and Review**

| Status     | Prepared by        | Reviewed by | Date issued     |
|------------|--------------------|-------------|-----------------|
| Revision 0 | Setareh Pourkazemi | Paul Gorman | 13 August 2024  |
| Revision 1 | Setareh Pourkazemi | Paul Gorman | 13 January 2025 |

# **Distribution of Copies**

Status Issued to

Revision 0 School Infrastructure NSW Revision 1 School Infrastructure NSW

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature Date

Author 13 January 2025

Reviewer / Yorman 13 January 2025



# **Table of Contents**

|     |       |                                                         | Page No |
|-----|-------|---------------------------------------------------------|---------|
| l.  | Intro | oduction                                                | 1       |
| 2.  | Prop  | oosed development                                       | 1       |
| 3.  | Scop  | oe of work                                              | 2       |
| 4.  | Site  | information                                             | 2       |
| 5.  | Fnvi  | ronmental setting                                       | 3       |
|     | 5.1   | Topography                                              |         |
|     | 5.2   | Site geology                                            |         |
|     | 5.3   | Soil landscape                                          |         |
|     | 5.4   | Acid sulfate soils                                      | 4       |
|     | 5.5   | Salinity                                                | 4       |
|     | 5.6   | Surface water and groundwater                           | 4       |
| 6.  | Sum   | nmary of asbestos register and asbestos management plan | 5       |
| 7.  | Sum   | nmary of previous investigations                        | 6       |
|     | 7.1   | Douglas (2023) – PSI                                    | 6       |
|     | 7.2   | Douglas (2025) – DSI                                    | 7       |
| 8.  | Prel  | iminary conceptual site model                           | 9       |
| 9.  | Sam   | pling plan                                              | 11      |
|     | 9.1   | Data quality objectives                                 | 11      |
|     | 9.2   | Soil sampling and testing rationale and scope           | 11      |
| 10. | Site  | assessment criteria                                     | 12      |
| 11. | Resu  | ults                                                    | 12      |
|     | 11.1  | Field work results                                      | 12      |
|     | 11.2  | Laboratory analytical results                           | 13      |
| 12. | Disc  | ussion                                                  | 13      |
|     | 12.1  | Site suitability assessment                             | 13      |
|     | 12.2  | Preliminary waste classification                        | 14      |
|     | 12.3  | Data quality assurance and quality control              | 15      |
| 13. | Con   | clusions and recommendations                            | 15      |
| 14. | Refe  | rences                                                  | 16      |
| 15  | Limi  | tations                                                 | 16      |



**Appendix A:** Drawings

**Appendix B:** About This Report

**Appendix C:** Data Quality Objectives

**Appendix D:** Field Work Methodology

**Appendix E:** Site Assessment Criteria

**Appendix F:** Table Summary Results

**Appendix G:** Borehole Logs

**Appendix H:** Laboratory Analysis Certificates

**Appendix I:** Data Quality Assurance and Data Quality Control





# Report on Supplementary Contamination Investigation Proposed Multi-Purpose School Hall, Sutherland Public School 38-54 and 66 Eton Street, Sutherland NSW

## 1. Introduction

Douglas Partners Pty Ltd (Douglas) has been engaged by School Infrastructure NSW (SINSW) to prepare this Supplementary Contamination Investigation report for the proposed multipurpose school hall to a portion of Sutherland Public School (SPS), located at 38-54 Eton Street, Sutherland NSW (the "school"). The investigation area is limited to the area of the proposal hall, as shown on Drawing 1, Appendix A (the "site").

The investigation was undertaken in accordance with Douglas' proposal 224456.01.P.001.Rev0 dated 8 July 2024 and in conjunction with a geotechnical investigation reported separately.

Douglas recently completed a detailed site (contamination) investigation (DSI) (ref: 224456.00.R.002.RevI) for this project. At the time of undertaking the DSI, three options were being considered for the location of the hall (Options I to 3). This supplementary contamination investigation is being undertaken at the request of School Infrastructure NSW (SINSW) to provide additional sub-surface and contamination information related to Option I. It is noted that the DSI report recommended remediation works in relation to Option I, so the information presented in this report is to be used to further inform the remediation action plan (RAP) for the site.

This report must be read in conjunction with all appendices including the notes provided in Appendix B.

The following key guidelines were consulted in the preparation of this report:

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013); and
- NSW EPA Guidelines for Consultants Reporting on Contaminated Land (NSW EPA, 2020).

# 2. Proposed development

It is understood that the development of the site comprises the construction of a multi-purpose school hall on grade. Further details on the proposed hall were not known at the time of preparing of this report, however it is understood that it will likely house a stage, toilets and canteen. It will also likely be utilised by the general public as a community hall. No basement levels are proposed for the new building, however, small retaining walls may be required in some areas due to site topography.



# 3. Scope of work

The scope of work comprised:

- Review of the previous DSI and geotechnical reports prepared for the site and include relevant results in this report;
- Opportunistic sampling from five boreholes (BH101 to BH105) drilled in conjunction with the
  geotechnical investigation using a tight-access drilling rig fitted with 110 mm diameter solid
  flight augers to depths between 2.7 m to 4 m below ground level (bgl) to the top of
  weathered rock;
- Dispatched selected samples to a National Association of Testing Authorities (NATA) accredited laboratory plus quality assurance/quality control samples (QA/QC) for the analysis of:
  - Heavy metals (including arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc);
  - o Total recoverable hydrocarbons (TRH);
  - o Benzene, toluene, ethyl benzene, total xylenes (BTEX);
  - o Polycyclic aromatic hydrocarbons (PAH);
  - Organochlorine pesticides (OCP);
  - o Organophosphorus pesticides (OPP);
  - Polychlorinated biphenyls (PCB);
  - Asbestos (fibrous asbestos / asbestos fines FA / AF);
- Quality samples were also collected and analysed, including replicate sample and trip spike and trip blank; and
- Preparation of this report.

# 4. Site information

| Site address       | Western portion of the SPS, part of 38-54 Eton Street,<br>Sutherland 38-54 and 66 Eton Street, Sutherland NSW |  |
|--------------------|---------------------------------------------------------------------------------------------------------------|--|
| Legal description  | Lots 1 to 10 in Deposited Plan 6600                                                                           |  |
|                    | Lots 5 to 10 in Deposited Plan 802                                                                            |  |
| Site Area          | Occupies approximately 800 m²                                                                                 |  |
| Zoning (School)    | Zone SP2 Infrastructure (Educational Establishment)                                                           |  |
| Local Council Area | Sutherland Shire Council                                                                                      |  |
| Current use        | Primary school                                                                                                |  |



Surrounding uses (i.e. proposed Option 1 location) North – open car park area, multi-use hardstand open spaces and SPS campus's building

East – Playground areas (including four tennis courts) as part the school

South – turfed (natural and artificial) areas, multi-use hardstand open spaces followed by SPS building and

West - landscaped garden beds, followed by Eton Street



Figure 1: Aerial image of the site overlain by 2 m surface contours to AHD

# 5. Environmental setting

# 5.1 Topography

Regional topography is generally elevated (>100 AHD), sloping downwards towards the northwest into Woronora River, and gently slopes in the south westerly direction towards Savilles Creek, that eventually flows into Hacking River.

Reference to the NSW 2 m elevation contour mapping indicates that the site is essentially flat, with the site slopes gently from about RL 113 m relative to Australian Height datum (AHD) in the north to RL 111 in the south, as shown in Figure 1.



### 5.2 Site geology

Reference to the Sydney 1:100 000 Geological Series Map indicates that the site is underlain by Hawkesbury Sandstone (shale lenses) of the Triassic period, which typically comprises fluvially deposited laminated mudstone, claystone, siltstone and sandstone.

## 5.3 Soil landscape

Reference to the Sydney 1:100 000 Soil Landscape Series map indicates that the site is underlain by a landscape group known as the Gymea soil landscape.

The Gymea soil landscape is an erosional soil landscape and is characterised by topography of undulating to rolling rises and low hills on Hawkesbury Sandstone, with local relief of 20 m to 80 m and slope gradients of 10% to 25%.

#### 5.4 Acid sulfate soils

Reference to the 1:25 000 Acid Sulfate Soils (ASS) Risk map indicates that the site is in an area of no known occurrence of acid sulfate soils. The nearest mapped occurrences of ASS are close to the Woronora River, which is over 1 km away from the school. The high elevation and geology at the site suggest that the presence of acid sulphate soils is unlikely.

The Section 10.7 Planning Certificates also indicate that the site is not affected by the occurrence of acid sulfate soils.

# 5.5 Salinity

Dryland salinity risk and hazard mapping was undertaken in 2000 by the former NSW Government Departments of Land and Water Conservation to show the broad distribution of areas considered as having either a high salinity risk or a high salinity hazard.

The school site is not located within, or close to, mapped areas with high salinity risk or high salinity hazard. The nearest areas mapped as having high salinity risk / hazard are in Western Sydney.

# 5.6 Surface water and groundwater

The closest watercourse to the site is Savilles Creek, located approximately 600 m south of the site. The surface water from the site is expected to run in a south and south westerly direction towards Savilles Creek and be collected by the regional stormwater system.

A search of the Water NSW publicly available registered database was undertaken on 31 July 2024. The search results indicated (17) registered groundwater bores located within 500 m of the site. The five closest groundwater bores and their purposes are as summarised below in Table 1. The majority of the wells are associated with remediation and monitoring of the United Service Station.



Table 1: Summary of available information from nearby registered groundwater bores

| Bore ID  | Authorised purpose        | Completion<br>year | Status             | Location relative to site | Final<br>depth<br>(m) | Standing<br>water level<br>(m bgl) |
|----------|---------------------------|--------------------|--------------------|---------------------------|-----------------------|------------------------------------|
| GW016096 | Waste<br>Disposal<br>Bore | 1958               | Unknown            | 140 m<br>north-<br>west   | 76.5                  | 2.70                               |
| GW110812 | Monitoring<br>bore        | 2009               | Supply<br>obtained | 350 m<br>north-<br>west   | 6.00                  | 3.64                               |
| GW110813 | Monitoring<br>bore        | 2009               | Supply<br>obtained | 350 north-<br>west        | 6.00                  | 3.03                               |
| GW110814 | Monitoring<br>bore        | 2009               | Supply<br>obtained | 355 m<br>north-<br>west   | 5.00                  | 2.90                               |
| GW110815 | Monitoring<br>bore        | 2009               | Supply<br>obtained | 356 north-<br>west        | 5.60                  | 3.70                               |

Based on the regional topography, the anticipated flow direction of groundwater beneath the site is to the south or south-west. The likely receiving surface water body is Savilles Creek located to the south side of the site which eventually flows into Hacking River and Port Hacking.

Groundwater was not observed during the recent and previous field work for the investigations. The groundwater monitoring wells installed for Project 40773 showed water levels between 1 m and 5 m depth. This was considered to be perched seepage within the soil and weathered rock profile rather than the regional groundwater table.

# 6. Summary of asbestos register and asbestos management plan

During the DSI, Douglas has reviewed the asbestos register and asbestos management plan for the school. The reviewed of asbestos registered, indicated that asbestos containing material may be present in grounds as part of fill material. Asbestos was also detected in buildings in a few locations, including within the site. The proposed development would require the demolition of Building J (Pupil Facilities), which is built in 1984. In accordance with the asbestos register, chrysotile asbestos was detected, especially in the cement sheeting used for eaves, ceilings and vinyl floor tiles. As per the asbestos register, all instances of asbestos are in good condition and do not require immediate attention for remediation.

As per the Asbestos Management Plan (AMP) for NSW Government Schools, all asbestos removal and remediation must be administered by Department of Public Works and Services (DPWS) and the Department of Education (DoE). All removals are to be undertaken according to:

- NSW Work Health and Safety Act 2011;
- NSW Work Health and Safety Regulation 2011;
- How to Manage and Control Asbestos in the Workplace: Code of Practice 2011;



- How to Safely Remove Asbestos: Code of Practice 2011; and
- Other relevant documentation issued from time to time by WorkCover NSW or SafeWork Australia.

# 7. Summary of previous investigations

The following previous reports are relevant to the current investigation:

- Douglas Report on Preliminary Site Investigation (Contamination) PSI, Proposed Multipurpose School Hall, 38-54 and 66 Eton Street, Sutherland NSW, dated 21 September 2023 (Report reference: 224456.00); and
- Douglas Report on Detailed Site Investigation (Contamination), Proposed Multi-purpose School Hall, 38-54 and 66 Eton Street, Sutherland NSW, dated 13 January 2025 (Report reference: 224456.00.R.002.Rev1).

# 7.1 **Douglas (2023) – PSI**

The PSI was undertaken for the whole of the school grounds and comprised a desktop review of site history and information (i.e. NSW EPA public records, historical aerial photographs, title deeds, geology, acid sulfate soil and hydrology) and environs, a site walkover and development of a conceptual site model (CSM). The objective of the PSI was to assess the potential for contamination at the site based on past and present land uses, to assess the suitability of the site for proposed development and to comment on the need for further investigation and / or management of contamination with regard to the proposed development.

The site history information suggests that the northern part of the site was developed into the school as early as 1888 (based on historical titles), with the central and southern portions also being developed into the school by 1950. The part of site to the south of President Ave had residential dwellings until 1977 and was redeveloped into a sports ground as part of the school in the 1989 aerial photograph. During the period from 1943 (first available aerial photograph) it is clear that some buildings have been constructed and demolished at various times, whilst a small number have remained at least since 1943.

A search of properties with EPA notices and licences and review of the Section 10.7 Planning Certificate did not identify the site to be notified to the EPA as contaminated, regulated under the CLM Act, hold a licence, or have received any EPA notices.

Potential sources of contamination identified from the site history information reviewed and the site walkover included fill (including potential impacts from previously demolished buildings), the degradation of hazardous building materials in the current site buildings, and the application of herbicides.

The PSI suggested intrusive investigations to target the three location options for the proposed multi-purpose hall development. The objective of those investigations was to assess the suitability for each option area to support the proposed development from a contamination perspective.



# 7.2 **Douglas (2025) – DSI**

The main objective of the DSI was to assess the potential contamination across the three proposed option areas and to assess the suitability for each option area to support the proposed development from a contamination perspective.

The scope of work conducted at the time of the DSI comprised a desktop review of the PSI, a review of desktop review of historical and mapping information applicable to the site and the drilling and sampling of 12 geotechnical boreholes (BH01 to BH12) across the three proposed option areas. Boreholes were positioned as follows:

- Boreholes BH01 to BH05 were drilled inside the proposed Option 1 area;
- Boreholes BH06 to BH09 were drilled inside the proposed Option 2 area; and
- Boreholes BH10 to BH12 were drilled inside the proposed Option 3 area.

The borehole locations adopted for Option 1 are shown on Drawing 1, Appendix A. The following generalised subsurface profile was encountered in the boreholes within Option 1:

- PAVEMENT: asphaltic concrete was present at BH01, BH02 and BH03 to depths of 0.1 m; overlying;
- FILL: Fill was encountered within all boreholes either from the ground surface or beneath the
  pavement to depths of between 0.2 m to 1.3 m. The fill included gravelly SAND, SAND, CLAY,
  Sandy SILT with varying proportions of igneous gravel, trace rootlets, ironstone gravel;
  overlying;
- RESIDUAL CLAY: medium to high plasticity clay, red-brown, pale grey, yellow-brown. The consistency of the residual clay was stiff; overlying; and
- WEATHERED SHALE/SANDSTONE: very low strength, highly weathered Hawkesbury Sandstone, dark grey and orange-brown from around 2.3 m.

No visual or olfactory evidence (e.g. staining, odours, free phase product) was observed during the investigations to suggest the presence of contamination within the soils at the site.

Groundwater was intersected at 2.4 m depth (RL 117.6 m AHD) during auger drilling at one borehole (BH02). Free groundwater was not observed during auger drilling in any of the other boreholes. The use of drilling fluid during coring at BH01 to BH04 prevented further observations with depth.

Soil samples were collected from the boreholes drilled for geotechnical investigation purpose directly from the drilling rig solid flight auger at regular depth intervals, or upon signs of contamination, and change of strata. Seventeen samples were selected and submitted to a NATA accredited laboratory for the analyses of heavy metals, total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene and xylenes (BTEX), polyaromatic hydrocarbons (PAH), organochlorine pesticides (OCP), organophosphorus pesticides (OPP), polychlorinated biphenyls (PCB), phenols and asbestos.



All analytical results for all soil samples in Boreholes BH01 to BH05 (Option 1) were below the adopted site adopted criteria (SAC), with the following exceptions:

- Benzo(a)pyrene TEQ in samples BH01/0.5-0.6 and BD01 (duplicate sample of BH01) with concentrations of 9.5 mg/kg and 8.6 mg/kg respectively, exceeded HIL A criteria of 3 mg/kg;
- Benzo(a)pyrene (BaP) in samples BH01/0.4-0.5, BD01, BH03/0.4-0.5 m and BH05/0.4-0.5 m with concentrations of 7 mg/kg, 6.4 mg/kg, 1.4 mg/kg and 0.71 mg/kg exceeded the ecological criteria of 0.7 mg/kg; and
- TRH F3(>C10-C34) in samples BH01/0.4-0.5, BD01, BH02/0.1-0.2 m, BH03/0.4-0.5 and BH04/0-0.1 m with concentrations of 940 mg/kg, 390 mg/kg, 490 mg/kg and 330 mg/kg exceeded the ecological criteria.

The concentrations of PAH (including BaP) in fill samples from the Option 1 area may be reflective of the asphalt overlay, or possibly an ash component to the fill. The PAH is not leachable which is a characteristic of ash and asphalt. The reported TRH concentrations are also related to the PAH in the same samples. Should Option 1 be selected for the location of the proposed hall, it is likely that the asphalt and other pavement materials will be removed to facilitate construction. The report stated that the PAH impacts above HIL A criteria will also need to be chased out and removed to landfill, capped with the proposed building slab, or further assessed through a site specific Tier 2 risk assessment.

Based on the finding of the results, Douglas considered that Option 1 is suitable or can be made suitable for the proposed hall. In addition, the following recommendations were also made in relation to Option 1:

The asbestos register identifies asbestos in the buildings (as discussed in Section 6) within the Option 1 area. PAH and TRH have been found to exceed either human health or ecological criteria in a number of the fill samples in this area. It is considered likely that these concentrations are inherent in existing asphalt and/or ash in fill soils in this area, to depths typically of around 0.5 m bgl. The remaining analyte concentrations were below the adopted SAC in all samples. The Option 1 can be made suitable for the proposed hall development, subject to the following:

- The removal of identified asbestos and other hazardous materials in buildings within this area;
- Clearance of the building by a qualified occupational hygienist following the removal of hazardous materials, and then of the ground surface post demolition;
- The removal of the asphalt pavement from the area subject to construction and validation; and
- The excavation, waste classification and off-site disposal of observed asphalt and/or ash impacted soils from the area subject to construction and validation; or
- Capping of the contaminated fill with the proposed building slab, noting that this option will need to be formally notified and included in a long term environmental management plan; or
- Further site specific risk assessment of the contaminants through potentially additional sampling and testing and assessment of likely exposure scenarios (note that the outcome may still be that a form of remediation is required); and



- Preparation of a remediation action plan (RAP) to document the above options and the preferred option; and
- Validation of the remedial works implemented, confirming that the area subject to validation is suitable for the land use from a contamination perspective.

# 8. Preliminary conceptual site model

A conceptual site model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site became contaminated and how potential receptors may be exposed to contamination either in the present or the future i.e. it enables an assessment of the potential source – pathway – receptor linkages (complete pathways).

A CSM was presented in the DSI report and used to inform the soil sampling and testing plan reported as part of the DSI. The CSM has been updated on the basis of the results reported in the DSI report, as presented in the following Table 2.

# **Table 2: Summary of potential sources**

#### Potential sources and associated CoPC

#### **On-site sources**

**S1:** Fill: Associated with levelling, potentially impacted by demolition of former buildings and hardstand on the site.

Primary CoPC include metals, TRH, BTEX, PAH, and asbestos

Secondary CoPC include PCB, OCP, phenols

**S2:** Former and current buildings / structures containing hazardous building materials and potentially impacting surface soils in their vicinity

CoPC include asbestos, synthetic mineral fibres (SMF), lead (in paint) and PCB

The following potential human and environmental receptors, along with relevant potential pathways, have been identified and summarised in Table 3.

# Table 3: Summary of potential receptors and pathways

# **Potential human receptors**

HRI: Current users [school workers, student and visitors]

HR2: Construction and maintenance workers

**HR3:** End users [school workers, student and visitors]

HR4: Adjacent site users [education (as part of the school), commercial / residential



## Potential environmental receptors

ER1: Surface water [Savilles Creek]

ER2: Groundwater; and

**ER3:** Terrestrial ecosystems.

#### Potential pathways to human receptors

**HP1:** Ingestion and dermal contact

**HP2:** Inhalation of dust and / or vapours

#### Potential pathways to environmental receptors

**EP1:** Surface water run-off

EP2: Leaching of contaminants and vertical migration into groundwater

EP3: Lateral migration of groundwater providing base flow to water bodies

EP4: Inhalation, ingestion and absorption

# Summary of potentially complete exposure pathways

A 'source–pathway–receptor' approach has been used to assess the potential risks of harm being caused to human or environmental receptors from contamination sources on or in the vicinity of the site, via exposure pathways (potential complete pathways). The possible pathways between the above sources (S1 to S2) and receptors are provided in below Table 4.

Table 4: Summary of potentially complete exposure pathways

| Source and CoPC                                                                                                                                                                                                                        | Exposure pathway                                                                                                   | Receptor                                                                                                                                                  | Risk<br>management<br>action                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| S1: Fill: metals, TRH, BTEX, PAH, PCB, OCP, phenols and asbestos  S2: Former buildings: asbestos, synthetic mineral fibres (SMF), lead (in paint) and PCB  HP1: Ingestion and dermal contact  HP2: Inhalation of dust and / or vapours | dermal contact <b>HP2:</b> Inhalation of dust                                                                      | HR1: Current users [school workers, student and visitors] HR2: Construction and maintenance workers HR3: End users [school workers, student and visitors] | The DSI found TRH, PAH and metal concentration above the site assessment criteria (SAC). The supplementary |
|                                                                                                                                                                                                                                        | HR4: Adjacent site users [education (as part of the school), commercial / residential]                             | investigation is designed to further assess the contamination status based on                                                                             |                                                                                                            |
|                                                                                                                                                                                                                                        | <b>EP1:</b> Surface water run-off <b>EP3:</b> Lateral migration of groundwater providing base flow to water bodies | <b>ER1:</b> Surface water [Savilles Creek]                                                                                                                | the previous<br>results, and to<br>provide further                                                         |



| Source and CoPC | Exposure pathway                                  | Receptor                           | Risk<br>management<br>action                                                                           |
|-----------------|---------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------|
|                 | <b>EP2:</b> Leaching of contaminants and vertical | ER2: Groundwater                   | information to inform the RAP.                                                                         |
|                 | migration into<br>groundwater                     |                                    | Hazardous<br>building                                                                                  |
|                 | <b>EP4:</b> Inhalation, ingestion and absorption  | <b>ER3:</b> Terrestrial ecosystems | materials will need to be removed from buildings being demolished, in accordance with WHS legislation. |

# 9. Sampling plan

# 9.1 Data quality objectives

The supplementary contamination investigation was devised with reference to the seven-step data quality objectives (DQO) process which is provided in Appendix B Schedule B2, NEPC (2013). The data quality objective process is outlined in Appendix C.

# 9.2 Soil sampling and testing rationale and scope

The sampling plan was adopted at the request of SINSW.

A targeted sampling strategy was adopted for the site utilising the borehole locations (BH101 to BH105) as nominated by SINSW. The locations of boreholes were limited to the accessible areas utilising a tight-access drilling rig, as shown on Drawing 1, Appendix A.

Boreholes were drilled to depths between 2.7 m to 4 m bgl, using 110 mm diameter solid flight augers to the top of weathered rock. The boreholes were terminated due to practical refusal in inferred very low to low strength rock.

Soil samples were collected directly from auger from each borehole, at regular depth intervals, changes in lithology or signs of contamination (i.e. odours or staining).

Representative fill samples were analysed for the CoPCs based on the CSM, focussing predominantly on the primary CoPC.

The general sampling methods are described in the field work methodology, included in Appendix D.



# 10. Site assessment criteria

The site assessment criteria (SAC) applied in the current investigation are informed by the CSM (Section 8) which identified human and environmental receptors to potential contamination on the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The investigation and screening levels applied in the current investigation comprise levels adopted for a generic residential / land use scenario which also captures children's day care centres, preschools and primary schools.

The derivation of the SAC is included in Appendix E and the adopted SAC are listed on the summary analytical results tables in Appendix F.

# 11. Results

#### 11.1 Field work results

The borehole logs for this investigation are included in Appendix G. For reference, the borehole logs for BH01 to BH5 (part of the DSI) are also included in Appendix G. The general subsurface profile encountered at the combined borehole locations summarised as follows:

Pavement: Asphaltic concrete pavement, with thickness of between 50 mm

and 100 mm was encountered at all boreholes except BH103,

which was located within grassed garden bed; overlying

Fill: Sandy silt, silty sand and silty clay encountered to depths

between 0.2 m to 1.3 m with varying proportion of other

inclusions such as roots, wood fragments (BH103), ash (BH102);

overlying

Residual CLAY: Medium to high plasticity clay, with consistency ranging between

stiff to hard. Residual clay was observed to depths of between

2.3 m and 2.8 m; overlying

Weathered Bedrock: very low and low strength siltstone / shale bedrock

Free groundwater was not observed during auger drilling in any of the boreholes. The regional groundwater table is expected to be much deeper than shallow excavations that might occur during the proposed development at the site. Some minor seepage along the top of clay and bedrock and through joints and partings within the rock mass may occur and mostly after rainfall.

The following observations at specific borehole locations were also noted during the DSI (Option 1) and current field work:

• No building rubble and / or other anthropogenic inclusions were recorded in fill at any of the boreholes, apart from trace wood fragments and ash noted above;



- No asbestos containing material (PACM) was recorded on the exposed surface soil or within the boreholes; and
- No visual or olfactory evidence (e.g. staining, odours, free phase product) was observed during the investigations to suggest the presence of contamination within the soils or groundwater at the site.

## 11.2 Laboratory analytical results

The results of laboratory analysis are summarised in the following tables in Appendix F:

- Table F1: Summary of results of soil analysis (comprising current and DSI results); and
- Table F2: Summary of waste classification assessment (current and DSI results).

The laboratory certificate(s) of analysis together with the chain of custody and sample receipt information is / are provided in Appendix H.

# 12. Discussion

# 12.1 Site suitability assessment

The analytical results for contaminants tested in samples were below the SAC except for:

- Benzo(a)pyrene TEQ in samples BH01/0.5-0.6 m and BD01 (duplicate sample of BH01) with concentrations of 9.5 mg/kg and 8.6 mg/kg respectively, exceeded HIL A criteria of 3 mg/kg;
- Lead in sample BH103/0-0.1 m with a concentration of 350 mg/kg exceeded health investigation level (HIL A) criteria of 300 mg/kg;
- Benzo(a)pyrene (BaP) in samples BH01/0.4-0.5, BD01, BH03/0.4-0.5 m and BH05/0.4-0.5 m with concentrations of 7 mg/kg, 6.4 mg/kg, 1.4 mg/kg and 0.71 mg/kg exceeded the ecological criteria of 0.7 mg/kg;
- Zinc in sample BH103/0-0.1 m with a concentration of 390 mg/kg exceeded environmental investigation levels (EIL) criteria of 350 mg/kg; and
- TRH F3(>C10-C34) in samples BH01/0.4-0.5, BD01, BH02/0.1-0.2 m, BH03/0.4-0.5, BH04/0-0.1 m, and BH103/0-0.1, with concentrations of 940 mg/kg, 390 mg/kg, 490 mg/kg, 330 mg/kg and 340 mg/kg, exceeded the ecological criteria ESL of 300 mg/kg.

No asbestos was detected in any of samples analysed.

The concentrations of PAH (included BaP) in fill samples may be reflective of the asphalt overlay, or possibly an ash component to the fill (although only visually observed in one borehole). The reported TRH concentrations are also likely to be related to the PAH in the same samples. The PAH and lead impacts above HIL A criteria are subject to remediation, likely to comprise either chasing out and removal to landfill, capped with the proposed building slab, or further assessed through a site specific Tier 2 risk assessment.

The ecological based contaminant exceedances can be managed through the provision of hardstand and / or a suitable cover of clean fill which can be documented as part of the RAP.



# 12.2 Preliminary waste classification

The soil data from the borehole locations has been assessed against waste classification criteria in NSW EPA (2014) in order to provide a preliminary waste classification to assist in budgeting for the removal of surplus soils, and/or identified contaminated soils (if not retained) under the proposed development, the preliminary classification is for planning purposes only and does not provide a formal classification to inform off-site disposal of soils.

**Table 5: Six step classification** 

| Step                                                             | Comments            | Rationale                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Is the waste special waste?                                   | No*                 | No asbestos-containing materials (ACM), clinical or related waste, or waste tyres were observed in the boreholes.                                                                                                                                                                                                                                           |
|                                                                  |                     | * Asbestos was not observed in the boreholes or detected by the analytical laboratory. However, asbestos has been identified in the existing building within the site, and small diameter boreholes are not ideal for the detection of asbestos in soils. As such, there remains a potential for asbestos to be present in soils between sampled locations. |
| 2. Is the waste liquid waste?                                    | No                  | The fill comprised a soil matrix.                                                                                                                                                                                                                                                                                                                           |
| 3. Is the waste "pre-classified"?                                | No                  | The fill is not pre-classified with reference to NSW EPA (2014).                                                                                                                                                                                                                                                                                            |
| 4. Does the waste possess hazardous waste characteristics?       | No                  | The fill was not observed to contain or considered at risk to contain explosives, gases, flammable solids, oxidising agents, organic peroxides, toxic substances, corrosive substances, coal tar, batteries, lead paint or dangerous goods containers.                                                                                                      |
| 5. Determining a wastes classification using chemical assessment | Conducted           | Refer to Table F2, Appendix F).                                                                                                                                                                                                                                                                                                                             |
| 6. Is the waste putrescible or non-putrescible?                  | Non-<br>putrescible | The fill does not contain materials considered to be putrescible a.                                                                                                                                                                                                                                                                                         |

Note: a wastes that are generally not classified as putrescible include soils, timber, garden trimmings, agricultural, forestry and crop materials, and natural fibrous organic and vegetative materials (NSW EPA, 2014).

As shown in the attached Table F2, all contaminant concentrations for the analysed fill samples were below the contaminant thresholds (CTIs) for general solid waste (GSW) with the exception of the following:

• Lead in sample BH05/0.4-0.5 m, and BH103/0-0.1 m, exceeded the CT1 criteria for GSW of 100 mg/kg. TCLP extract and analysis was conducted on one of the samples, and the result was within the SCC1 and TCLP1 thresholds for GSW; and



• Benzo(a)pyrene in samples BH01/BD01-0.5-0.6 and BH03/ 0.4-0.5, exceeded the CTI criteria for GSW of 0.7 mg/kg. TCLP extract and analysis was conducted, and the results were within the SCCI and TCLP1 thresholds for GSW.

The current results are therefore consistent with a GSW classification as defined in NSW EPA (2014), and the fill across the site is preliminary classified *in situ* as GSW (non putrescible).

Douglas analysed two natural samples as part of the preliminary waste classification reported in the DSI report. Benzo(a) pyrene exceeded the CTI criteria for GSW of 0.7 mg/kg at BH03/0.4-0.5 m as shown in Table F2, Appendix F. Based on this, the natural soil at the BH03 may be impacted in the upper layers by the overlying fill.

Based on the site observations, and the limited test data, the natural soils and bedrock across the site is likely to classify as VENM, although this would need be verified *ex situ* at the time of excavation, and following the removal of the fill overburden.

Given the above, this preliminary classification is not a formal waste classification to inform off-site disposal. It is intended for planning purposes only. It is recommended that further *in situ* or *ex situ* investigation including visual and analytical processes using test pits, be conducted to confirm and formalise the preliminary waste classification, prior to off-site disposal.

# 12.3 Data quality assurance and quality control

The data quality assurance and quality control (QA/QC) results for this current investigation are included in Appendix I. A discussion on the data quality presented as part of the DSI is presented in that report.

Based on the results of the field QA and field and laboratory QC, and evaluation against the data quality indicators (DQI) it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

# 13. Conclusions and recommendations

Based on the findings of this current supplementary and the DSI (for Option 1) it is considered that the site can be made suitable for the proposed multi-purpose school hall, subject to implementation of the following recommendations:

- The removal of identified asbestos and other hazardous materials in buildings within this area;
- Clearance of the building by a qualified occupational hygienist following the removal of hazardous materials, and then of the ground surface post demolition;
- The removal of the asphalt pavement from the area subject to construction and validation;
- Preparation of a remediation action plan (RAP) to document a remediation process in relation to the health-based exceedances (lead and PAH) and the ecological based exceedances (PAH, zinc and TRH); and
- Validation of the remedial works implemented, confirming that the site is suitable for the land use from a contamination perspective.



It is noted that the PAH, TRH and lead contaminated soils are currently present beneath asphalt surfacing or appropriately 0.5 m of soil overburden. As such, the contamination is not considered to pose a risk of exposure to students at the site. However, the presence of the contamination should be documented in the school's register of hazardous materials, such that any future intrusive works in these areas appropriately consider the exposure to the contaminants. This is particularly the case in the event that the proposed development does not proceed in this location.

## 14. References

CRC CARE. (2017). Risk-based Management and Remediation Guidance for Benzo(a)pyrene. Technical Report no. 39: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

Douglas. (2023). Report on Detailed Site Investigation (Contamination) - Proposed Multi-purpose Medium Hall, 38-54 and 66 Eton Street, Sutherland NSW. (Reference 224456.00 dated 30 October 2023).

Douglas. (2023). Report on Preliminary Site Investigation (Contamination) PSI - Proposed Multipurpose Medium Hall, 38-54 and 66 Eton Street, Sutherland NSW. (Reference 224456.00 dated 21 September 2023).

Douglas. (2024). Report on Geotechnical Investigation, proposed Multi-purpose Medium Hall, 38-54 and 66 Eton Street, Sutherland NSW. (Reference 224456.01).

NEPC. (2013). *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]*. Australian Government Publishing Services Canberra: National Environment Protection Council.

NSW EPA. (2014). Waste Classification Guidelines, Part 1: Classifying Waste. NSW Environment Protection Authority.

NSW EPA. (2020). *Guidelines for Consultants Reporting on Contaminated Land*. Contaminated Land Guidelines: NSW Environment Protection Authority.

NSW EPA. (2022). Contaminated Sites, Sampling Design Guidelines. NSW Environment Protection Authority.

# 15. Limitations

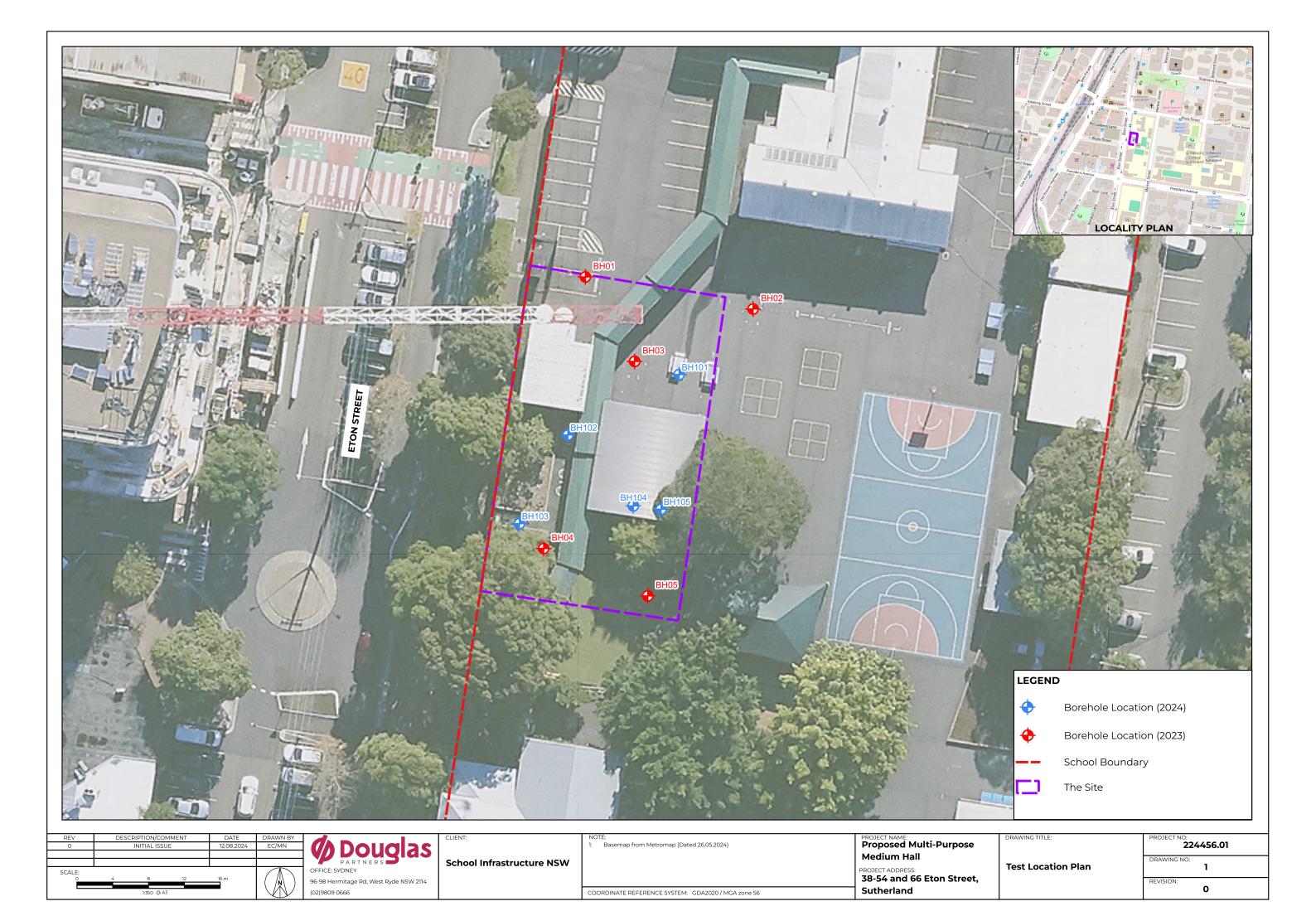
Douglas Partners Pty Ltd (Douglas) has prepared this report (or services) for this project at 38-54 and 66 Eton Street, Sutherland NSW in line with Douglas' proposal 224456.01.P.001.Rev0 dated 8/07/2024 and acceptance received from Glenn Francis of School Infrastructure NSW. The work was carried out under Douglas' Engagement Terms. This report is provided for the exclusive use of School Infrastructure NSW for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other



site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of Douglas, does so entirely at its own risk and without recourse to Douglas for any loss or damage. In preparing this report Douglas has necessarily relied upon information provided by the client and / or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and / or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after Douglas' field testing has been completed.

Douglas' advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by Douglas in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and / or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.


The assessment of atypical safety hazards arising from this advice is restricted to the (geotechnical/environmental/groundwater) components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. Douglas cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by Douglas. This is because this report has been written as advice and opinion rather than instructions for construction.

# Appendix A

Drawings



# Appendix B

About This Report

# **About this Report**



November 2023

#### Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

## Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

#### **Borehole and Test Pit Logs**

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

#### Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

- In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;
- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at

- the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

#### **Reports**

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

continued next page



# **About this Report**

#### **Site Anomalies**

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

# **Information for Contractual Purposes**

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

# **Site Inspection**

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

| intentionally blank |
|---------------------|
|                     |
|                     |
|                     |
|                     |
|                     |

intentionally blank



# Appendix C

Data Quality Objectives



# 1. Data quality objectives

The supplementary contamination investigation has been devised broadly in accordance with the seven-step data quality objectives (DQO) process which is provided in Appendix B, Schedule B2 of NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).

**Table 1: Data quality objectives** 

| Step                                          | Summary                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                               | The objective of the investigation is to obtain additional contamination status information for designated proposed Option 1 area, to assist in informing a remediation action plan (RAP).                                                                                                                                                                                                          |  |
|                                               | The report is being undertaken as the site is to be developed.                                                                                                                                                                                                                                                                                                                                      |  |
| 1: State the problem                          | A preliminary conceptual site model (CSM) has been prepared (Section 8) for the proposed development.                                                                                                                                                                                                                                                                                               |  |
|                                               | The project team consisted of experienced environmental engineers and scientists working in the roles of Project Principal, Project Reviewer, Project Manager and field staff.                                                                                                                                                                                                                      |  |
| 2: Identify the decisions / goal of the study | The site history and previous site contamination investigation has identified possible contaminating previous uses and features which are identified in the CSM (Section 8). The CSM identifies the associated contaminants of potential concern (CoPC) and the likely impacted media. The site assessment criteria (SAC) for each of the CoPC are detailed in Appendix E.                          |  |
| 3: Identify the information inputs            | Inputs to the investigation included site history information, site features and uses, field observations, sub surface and results of analysis of samples to measure the concentrations of COPC (identified in the CSM, Section 8) from NATA accredited laboratories and methods, where possible. The SAC for each of the CoPC are detailed in Appendix E.                                          |  |
| 4: Define the study boundaries                | The lateral boundaries of the investigation area are shown on Drawing 1, Appendix A (approximate only). The vertical boundaries were to the maximum depth of boreholes drilled, generally ranging between 2.7 m to 4 m bgl. Constraints to the assessment are identified and discussed in the conclusions of the report, Section 13.                                                                |  |
|                                               | The decision rule is to compare all analytical results with the SAC (Appendix E, based on NEPC (2013)). Where guideline values are absent, other sources of guideline values accepted by NEPC (2013) shall be adopted where possible.                                                                                                                                                               |  |
| 5: Develop the analytical approach            | Where a sample result exceeds the adopted criterion, a further site-specific assessment will be made as to the risk posed by the presence of that contaminant(s).                                                                                                                                                                                                                                   |  |
| (or decision rule)                            | Quality control results are to be assessed according to their relative percent difference (RPD) values. For field duplicates, triplicates and laboratory results, RPD values should generally be below 30%; for field blanks and rinsates, results should be at or less than the limits of reporting (NEPC, 2013). The field and laboratory quality assurance assessment is included in Appendix I. |  |



| Step                                              | Summary                                                                                                                                                                                                                                                        |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   | Baseline condition: Contaminants at the site and / or statistical analysis of data (in line with NEPC (2013)) exceed the human health and environmental SAC and pose a potentially unacceptable risk to receptors (null hypothesis).                           |
| 6: Specify the performance or acceptance criteria | Alternative condition: Contaminants at the site and statistical analysis of data (in line with NEPC (2013)) comply with the human health and environmental SAC and as such, do not pose a potentially unacceptable risk to receptors (alternative hypothesis). |
|                                                   | Unless conclusive information from the collected data is sufficient to reject the null hypothesis, it is assumed that the baseline condition is true.                                                                                                          |
| 7: Optimise the design for obtaining data         | As the purpose of the investigation is to assess the contamination status of the site, the sampling program is reliant on professional judgement to identify and sample the potentially affected areas.                                                        |
| data                                              | Further details regarding the proposed sampling plan are presented in Section 9.2.                                                                                                                                                                             |

# 2. References

NEPC. (2013). *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]*. Australian Government Publishing Services Canberra: National Environment Protection Council.

# Appendix D

Field Work Methodology



# 1. Guidelines

The following key guidelines were consulted for the field work methodology:

• NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).

# 2. Soil sampling

Soil sampling is carried out in accordance with Douglas' standard operating procedures. The general sampling and sample management procedures comprise:

- Collect soil samples directly from solid flight auger at regular depth;
- Place samples into laboratory-prepared glass jars with Teflon lined lids, capping immediately and minimising headspace within the sample jar;
- Collect ~500 ml samples in zip-lock bags for fibrous asbestos and asbestos fines (FA and AF) analysis;
- Wear a new disposable nitrile glove for each sample point thereby minimising potential for cross-contamination:
- Collect 10% replicate samples for quality control (QC) purposes;
- Label sample containers with individual and unique identification details, including project number, sample location and sample depth (where applicable);
- Place samples into a cooled, insulated and sealed container for transport to the laboratory; and
- Use chain of custody documentation.

# 3. References

NEPC. (2013). *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]*. Australian Government Publishing Services Canberra: National Environment Protection Council.

# Appendix E

Site Assessment Criteria



## 1. Introduction

#### 1.1 Guidelines

The following key guidelines were consulted for deriving the site assessment criteria (SAC):

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013); and
- CRC CARE Health screening levels for petroleum hydrocarbons in soil and groundwater (CRC CARE, 2011).

#### 1.2 General

The SAC applied in the current investigation are informed by the CSM which identified human and environmental receptors to potential contamination at the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The following inputs are relevant to the selection and/or derivation of the SAC:

The proposed development comprises construction of a multi-purpose medium hall including toilets and a canteen.

- Land use: residential:
  - o Corresponding to land use category 'A', residential with garden / accessible soil (home grown produce <10% fruit and vegetable intake, (no poultry)), also includes children's day care centres, preschools and primary schools; and
- Soil type: The fill encountered across the three proposed Option 1 area consisted of CLAY and SAND overlaying by natural CLAY. For the purpose of this investigation SAND was selected as the soil type as it informs the most stringent criteria.

# 2. Soils

# 2.1 Health investigation and screening levels

The generic health investigation levels (HIL) and health screening levels (HSL) are considered to be appropriate for the assessment of human health risk via all relevant pathways of exposure associated with contamination at the site. The adopted soil HIL and HSL for the contaminants of concern are in Table 1 and Table 2.

Table 1: Health investigation levels (mg/kg)

| Contaminant | HIL-A |  |
|-------------|-------|--|
| Metals      |       |  |
| Arsenic     | 100   |  |
| Cadmium     | 20    |  |



| Contaminant         | HIL-A |  |  |
|---------------------|-------|--|--|
| Chromium (VI)       | 100   |  |  |
| Copper              | 6000  |  |  |
| Lead                | 300   |  |  |
| Mercury (inorganic) | 40    |  |  |
| Nickel              | 400   |  |  |
| Zinc                | 7400  |  |  |
| PAH                 |       |  |  |
| B(a)P TEQ           | 3     |  |  |
| Total PAH           | 300   |  |  |
| Phenols             | •     |  |  |
| Pentachlorophenol   | 100   |  |  |
| ОСР                 |       |  |  |
| DDT+DDE+DDD         | 240   |  |  |
| Aldrin and dieldrin | 6     |  |  |
| Chlordane           | 50    |  |  |
| Endosulfan          | 270   |  |  |
| Endrin              | 10    |  |  |
| Heptachlor          | 6     |  |  |
| НСВ                 | 10    |  |  |
| Methoxychlor        | 300   |  |  |
| ОРР                 | •     |  |  |
| Chlorpyrifos        | 160   |  |  |
| РСВ                 |       |  |  |
| PCB                 | 1     |  |  |

# Table 2: Health screening levels (mg/kg)

| Contaminant  | HSL-A&B     | HSL-A&B     | HSL-A&B     |
|--------------|-------------|-------------|-------------|
| SAND         | 0 m to <1 m | 1 m to <2 m | 2 m to <4 m |
| Benzene      | 0.5         | 0.5         | 0.5         |
| Toluene      | 160         | 220         | 310         |
| Ethylbenzene | 55          | NL          | NL          |
| Xylenes      | 40          | 60          | 95          |
| Naphthalene  | 3           | NL          | NL          |



| Contaminant | HSL-A&B | HSL-A&B | HSL-A&B |
|-------------|---------|---------|---------|
| TRH FI      | 45      | 70      | 110     |
| TRH F2      | 110     | 240     | 440     |

Notes: TRH F1 is TRH  $C_6$ - $C_{10}$  minus BTEX TRH F2 is TRH >  $C_{10}$ - $C_{16}$  minus naphthalene

The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would results in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'

Note that various depths to contamination are listed in Table 2. This is due to the potential depths between receptors (i.e. at ground or basement level) and the contaminant sources (e.g. fill and groundwater). Only the most conservative criteria are presented on the results tables in Appendix F.

The HSL for direct contact derived from CRC CARE (2011) are in Table 3.

Table 3: Health screening levels for direct contact (mg/kg)

| Contaminant  | DC HSL-A | DC HSL-IMW |
|--------------|----------|------------|
| Benzene      | 100      | 1100       |
| Toluene      | 14 000   | 120 000    |
| Ethylbenzene | 4500     | 85 000     |
| Xylenes      | 12 000   | 130 000    |
| Naphthalene  | 1400     | 29 000     |
| TRH FI       | 4400     | 82 000     |
| TRH F2       | 3300     | 62 000     |
| TRH F3       | 4500     | 85 000     |
| TRH F4       | 6300     | 120 000    |

Notes: TRH F1 is TRH  $C_6$ - $C_{10}$  minus BTEX TRH F2 is TRH >  $C_{10}$ - $C_{16}$  minus naphthalene

# 2.2 Asbestos in soil

The HSL for asbestos in soil are based on likely exposure levels for different scenarios published in NEPC (2013) for the following forms of asbestos:

- Bonded asbestos containing material (ACM); and
- Fibrous asbestos and asbestos fines (FA and AF).

The HSL are in Table 4.



Table 4: Health screening levels for asbestos

| Form of asbestos  | HSL-A                                  |
|-------------------|----------------------------------------|
| ACM               | 0.01%                                  |
| FA and AF         | 0.001%                                 |
| FA and AF and ACM | No visible asbestos for surface soil * |

Notes: Surface soils defined as top 10 cm.

# 2.3 Ecological investigation levels

Ecological investigation levels (EIL) and added contaminant limits (ACL), where appropriate, have been derived in NEPC (2013) for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene. The adopted EIL, derived using the interactive (excel) calculation spreadsheet on the NEPM toolbox website are shown in Table 6, with inputs into their derivation shown in Table 5.

Table 5: Inputs to the derivation of the ecological investigation levels

| Variable            | Input                     | Rationale                                                                |
|---------------------|---------------------------|--------------------------------------------------------------------------|
| Age of contaminants | "Aged"                    | Soils on site are > 2 years                                              |
| Н                   | 5.7                       | -                                                                        |
| CEC                 | 5.8 cmol <sub>c</sub> /kg | -                                                                        |
| Clay content        | 10%                       | Variable soil in some fill locations, conservative value of clay adopted |
| Traffic volumes     | high                      | -                                                                        |
| State / Territory   | NSW                       | -                                                                        |

Table 6: Ecological investigation levels (mg/kg)

| Contaminant  | EIL-A-B-C |
|--------------|-----------|
| Metals       |           |
| Arsenic      | 100       |
| Copper       | 140       |
| Nickel       | 50        |
| Chromium III | 410       |
| Lead         | 1100      |
| Zinc         | 350       |
| РАН          |           |
| Naphthalene  | 170       |
| ОСР          |           |

<sup>\*</sup> Based on site observations at the sampling points and the analytical results of surface samples.



| Contaminant | EIL-A-B-C |
|-------------|-----------|
| DDT         | 180       |

EIL-A-B-C urban residential and public open space

### 2.4 Ecological screening levels

Ecological screening levels (ESL) are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. The adopted ESL are shown in Table 7.

Table 7: Ecological screening levels (mg/kg)

| Contaminant  | Soil Type    | ESL-A-B-C |
|--------------|--------------|-----------|
| Benzene      | Coarse       | 50        |
| Toluene      | Coarse       | 85        |
| Ethylbenzene | Coarse       | 70        |
| Xylenes      | Coarse       | 105       |
| TRH FI       | Coarse/ Fine | 180*      |
| TRH F2       | Coarse/ Fine | 120*      |
| TRH F3       | Coarse       | 300       |
| TRH F4       | Coarse       | 2800      |
| B(a)P        | Coarse       | 0.7       |

Notes: ESL are of low reliability except where indicated by \* which indicates that the ESL is of moderate reliability TRH F1 is TRH  $C_6$ - $C_{10}$  minus BTEX

TRH F2 is TRH >C10-C16 including naphthalene

ESL-A-B-C urban residential and public open space

### 2.5 Management limits

In addition to appropriate consideration and application of the HSL and ESL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosion hazards; and
- Effects on buried infrastructure e.g. penetration of, or damage to, in-ground services.

The adopted management limits are in Table 8.



### Table 8: Management limits (mg/kg)

| Contaminant | Soil type | ML-A-B-C |
|-------------|-----------|----------|
| TRH FI      | Coarse    | 700      |
| TRH F2      | Coarse    | 1000     |
| TRH F3      | Coarse    | 2500     |
| TRH F4      | Coarse    | 10 000   |

Notes: TRH F1 is TRH  $C_6$ - $C_{10}$  including BTEX TRH F2 is TRH >C $_{10}$ - $C_{16}$  including naphthalene

ML-A-B-C residential, parkland and public open space

### 3. References

CRC CARE. (2011). Health screening levels for petroleum hydrocarbons in soil and groundwater. Parts 1 to 3, Technical Report No. 10: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

NEPC. (2013). *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]*. Australian Government Publishing Services Canberra: National Environment Protection Council.

## Appendix F

Table Summary Results



Table F1: Summary of Laboratory Results – Priority metals, PAH, TRH, BTEX, phenols, OCP, OCP, PCB, Asbestos (FA/AF)

|                   |                  |                      |             |               |            |                | Priority                 | y metals                                     |                        |              |                              |               | P/                        | АН                                |              |              |              | TR                 | н                                  |                     |                       |
|-------------------|------------------|----------------------|-------------|---------------|------------|----------------|--------------------------|----------------------------------------------|------------------------|--------------|------------------------------|---------------|---------------------------|-----------------------------------|--------------|--------------|--------------|--------------------|------------------------------------|---------------------|-----------------------|
|                   |                  |                      |             | Total Arsenic | Cadmium    | Total Chromium | Copper                   | Lead                                         | Mercury<br>(inorganic) | Nickel       | Zinc                         | Naphthalene b | Benzo(a)pyrene<br>(B(a)P) | Benzo(a)pyrene<br>TEQ (B(a)P TEQ) | Total PAH    | TRH C6 - C10 | TRH >C10-C16 | FI ((C6-C10)-BTEX) | F2 ( >C10-C16 less<br>Naphthalene) | F3 (>C16-C34)       | F4 (>C34-C40)         |
|                   |                  |                      | PQL         | 4             | 0.4        | 1              | 1                        | 1                                            | 0.1                    | 1            | 1                            | 1             | 0.05                      | 0.5                               | 0.05         | 25           | 50           | 25                 | 50                                 | 100                 | 100                   |
| Sample ID         | Depth            | FILL/ Natural        | Sample Date | mg/kg         | mg/kg      | mg/kg          | mg/kg                    | mg/kg                                        | mg/kg                  | mg/kg        | mg/kg                        | mg/kg         | mg/kg                     | mg/kg                             | mg/kg        | mg/kg        | mg/kg        | mg/kg              | mg/kg                              | mg/kg               | mg/kg                 |
| Supplementary (   | Contamination I  | nvestigation (Dou    | glas, 2024) |               |            |                |                          |                                              |                        |              |                              |               |                           |                                   |              |              |              |                    |                                    |                     |                       |
| BH101             | 0.4 - 0.5 m      | FILL/ SAND           | 16/07/24    | 10            | <0.4       | 18             | 9                        | 15                                           | <0.1                   | 3            | 10                           | <]            | <0.05                     | <0.5                              | <0.05        | <25          | <50          | <25                | <50                                | 260                 | 370                   |
|                   |                  |                      |             | 100 100       | 20 -       | 100 410        | 6,000 140                | 300 1,100                                    | 40 -                   | 400 50       | 7,400 350                    | 3 170         | - 0.7                     | 3 -                               | 300 -        |              | - 120        | 45 180             | 110 -                              | - 300               | - 2,800               |
| BH102             | 0.4 - 0.5 m      | FILL / SANDY<br>SILT | 16/07/24    | 6             | <0.4       | 13             | 27                       | 50                                           | <0.1                   | 2            | 97                           | <1            | <0.05                     | <0.5                              | <0.05        | <25          | <50          | <25                | <50                                | <100                | <100                  |
|                   |                  |                      |             | 100 100       | 20 -       | 100 410        | 6,000 140                | 300 1,100                                    | 40 -                   | 400 50       | 7,400 350                    | 3 170         | - 0.7                     | 3 -                               | 300 -        |              | - 120        | 45 180             | 110 -                              | - 300               | - 2,800               |
| BD1               | 0 m              | FILL / SANDY<br>SILT | 16/07/24    | 6             | <0.4       | 13             | 5                        | 17                                           | <0.1                   | 2            | 17                           | <]            | <0.05                     | <0.5                              | <0.05        | <25          | <50          | <25                | <50                                | <100                | <100                  |
|                   |                  | FILL/SANDY           |             | 100 100       | <0.4       | 100 410        | 6,000 140<br>40          | 300 1,100<br><b>350</b>                      | 0.2                    | 400 50       | 7,400 350<br><b>390</b>      | 3 170<br><1   | - 0.7<br><b>0.53</b>      | 0.7                               | 300 -<br>4.5 | <25          | - 120<br><50 | 45 180<br><25      | 110 -<br><50                       | - 300<br><b>340</b> | - 2,800<br><b>360</b> |
| BH103             | 0 - 0.1 m        | SILT                 | 16/07/24    | 100 100       | 20 -       | 100 410        | 6,000 140                | 300 1.100                                    | 40 -                   | 400 50       | 7,400 350                    | 3 170         | - 0.7                     | 7                                 | 300 -        | ^23          | - 120        | 45 180             | 110 -                              | - 300               | - 2,800               |
|                   |                  | FILL/SILTY           |             | 20            | <0.4       | 29             | 12                       | 26                                           | <0.1                   | 2            | 13                           | <1            | <0.05                     | <0.5                              | <0.05        | <25          | <50          | <25                | <50                                | <100                | <100                  |
| BH103             | 0.8 - 1 m        | CLAY                 | 16/07/24    | 100 100       |            | 100 410        | 6,000 140                |                                              | 40 -                   | 400 50       | 7,400 350                    | 3 170         | - 0.7                     | 3 -                               | 300 -        |              | - 120        | 45 180             | 110 -                              | - 300               | - 2,800               |
|                   |                  | FILL/SANDY           |             | 15            | <0.4       | 30             | 4                        | 20                                           | <0.1                   | 3            | 7                            | <1            | <0.05                     | <0.5                              | <0.05        | <25          | <50          | <25                | <50                                | <100                | <100                  |
| BH104             | 0.4 - 0.5 m      | SILT                 | 16/07/24    | 100 100       | 20 -       | 100 410        | 6,000 140                | 300 1,100                                    | 40 -                   | 400 50       | 7,400 350                    | 3 170         | - 0.7                     | 3 -                               | 300 -        |              | - 120        | 45 180             | 110 -                              | - 300               | - 2,800               |
| DI 1705           | 0 / 05           | FILL/SILTY           | 36/05/07    | 9             | <0.4       | 20             | 10                       | 20                                           | <0.1                   | 2            | 13                           | <1            | <0.05                     | <0.5                              | <0.05        | <25          | <50          | <25                | <50                                | <100                | <100                  |
| BH105             | 0.4 - 0.5 m      | CLAY                 | 16/07/24    | 100 100       | 20 -       | 100 410        | 6,000 140                | 300 1,100                                    | 40 -                   | 400 50       | 7,400 350                    | 3 170         | - 0.7                     | 3 -                               | 300 -        |              | - 120        | 45 180             | 110 -                              | - 300               | - 2,800               |
| Detailed Site Inv | estigation (Doug | glas, 2023)          |             |               |            |                |                          | '                                            |                        | •            |                              |               |                           | •                                 |              |              |              |                    |                                    |                     |                       |
|                   |                  | EU . (0.11)          |             | 10            | <0.4       | 33             | 22                       | 23                                           | 0.1                    | 17           | 150                          | <0.1          | 7                         | 9.5                               | 64           | <25          | <50          | <25                | <50                                | 940                 | 600                   |
| BH01              | 0.5 - 0.6 m      | FILL/SAND            | 27/09/23    | 100 100       | 20 -       | 100 410        | 6000 180                 | 300 1100                                     | 40 -                   | 400 100      | 7400 460                     | 3 170         | - 0.7                     | 3 -                               | 300 -        |              | - 120        | 45 180             | 110 -                              | - 300               | - 2800                |
| BD01/20230927     | 0.5 - 0.6 m      | FILL/SAND            | 27/09/23    | 5             | <0.4       | 18             | 30                       | 19                                           | <0.1                   | 22           | 150                          | <0.1          | 6.4                       | 8.6                               | 56           | <25          | <50          | <25                | <50                                | 940                 | 760                   |
| 5501/20200021     | 0.0 0.0          |                      | 27700720    | 100 100       | 20 -       | 100 410        | 6000 180                 | 300 1100                                     | 40 -                   | 400 100      | 7400 460                     | 3 170         | - 0.7                     | 3 -                               | 300 -        |              | - 120        | 45 180             | 110 -                              | - 300               | - 2800                |
| BH02              | 0.1 - 0.2 m      | FILL/CLAY            | 27/09/23    | 100 100       | <0.4       | 15<br>100 410  | 29<br>6000 180           | 23<br>300 1100                               | <0.1<br>40 -           | 6<br>400 100 | 31<br>7400 460               | <0.1<br>3 170 | 0.1                       | <0.5                              | 300 -        | <25          | <50<br>- 120 | <25<br>45 180      | <50<br>110 -                       | <b>390</b><br>- 300 | <b>580</b>            |
|                   |                  |                      |             | 100           | <0.4       | 26             | 16                       | 24                                           | <0.1                   | 9            | 37                           | <0.1          | 1.4                       | 2                                 | 14           | <25          | <50          | <25                | <50                                | 490                 | 460                   |
| BH03              | 0.4 - 0.5 m      | CLAY                 | 27/09/23    | 100 100       | 20 -       | 100 410        | 6000 180                 | 300 1100                                     | 40 -                   | 400 100      | 7400 460                     | 3 170         | - 0.7                     | 3 -                               | 300 -        |              | - 120        | 45 180             | 110 -                              | - 300               | - 2800                |
|                   |                  |                      |             | 5             | <0.4       | 10             | 29                       | 53                                           | <0.1                   | 8            | 100                          | <0.1          | 0.2                       | <0.5                              | 2.1          | <25          | <50          | <25                | <50                                | 330                 | 460                   |
| BH04              | 0 - 0.1 m        | FILL/SANDY SILT      | 27/09/23    | 100 100       | 20 -       | 100 410        | 6000 180                 | 300 1100                                     | 40 -                   | 400 100      | 7400 460                     | 3 170         | - 0.7                     | 3 -                               | 300 -        |              | - 120        | 45 180             | 110 -                              | - 300               | - 2800                |
| BH04              | 0.9 - 1 m        | FILL/SANDY SILT      | 27/09/23    | 12            | <0.4       | 30             | 23                       | 77                                           | 0.1                    | 6            | 88                           | <0.1          | 0.2                       | <0.5                              | 1.8          | <25          | <50          | <25                | <50                                | 190                 | 330                   |
| BI 104            | 0.9 - 1111       | FIEL/SANDT SIET      | 21/09/23    | 100 100       | 20 -       | 100 410        | 6000 180                 | 300 1100                                     | 40 -                   | 400 100      | 7400 460                     | 3 170         | - 0.7                     | 3 -                               | 300 -        |              | - 120        | 45 180             | 110 -                              | - 300               | - 2800                |
| BH05              | 0.4 - 0.5 m      | FILL/SANDY SILT      | 27/09/23    | 100 100       | <0.4       | 15<br>100 410  | 26<br>6000 180           | 130                                          | 0.1<br>40 -            | 6<br>400 100 | 110<br>7400 460              | <0.1<br>3 170 | <b>0.71</b><br>- 0.7      | 0.9<br>3 -                        | 6.2<br>300 - | <25          | <50          | <25<br>45 180      | <50<br>110 -                       | <b>240</b><br>- 300 | - 2800                |
| Lab r             |                  | e                    |             | HIL/HSL       | exceedance | EIL/ESL ex     | ceedance ected by the la | HIL/HSL and ab, refer to the L/ESL (as appli | EIL/ESL excee          | Blue = DC ex | L exceedance<br>ceedance Rec | ML and F      | HIL/HSL or EIL/           | ESL exceedan                      | ce           |              | - 120        | ,                  |                                    | 530                 |                       |

HIL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level EGV = Environmental Guideline Value ML = Management Limit DC = Direct Contact HSL

#### Notes

- QA/QC replicate of sample listed directly below the primary sample
- b Naphthalene reported as highest detection from the BTEXN or PAH suite, or if both results <PQL as lowest PQL
- c EIL criteria applies to DDT only

### Site Assessment Criteria (SAC):

SAC based on generic land use thresholds for Residential A with garden/accessible soil

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

HIL-A (NEPC, 2013 or HEPA, 2020 (PFAS only))

HSL (vapour intrusion)

HSL-A/B (NEPC, 2013)

Direct contact HSL A Residential (Low density) (CRC CARE, 2011)

HSL (Vapour intrusion)

HSL (Vapour intrusion)

HSL (NEPC, 2013)



Table F1: Summary of Laboratory Results – Priority metals, PAH, TRH, BTEX, phenols, OCP, OCP, PCB, Asbestos (FA/AF)

|                   |                  |                                         |             |                | Bī             | TEX          |               | Phenols         |             |                   |                 |                  | Priority OCP |            |                 |              |       | Priority OPP  | PCB       | Asbesto             | os (FA/AF)              | ,                               | Asbestos, Othe           | ır             |
|-------------------|------------------|-----------------------------------------|-------------|----------------|----------------|--------------|---------------|-----------------|-------------|-------------------|-----------------|------------------|--------------|------------|-----------------|--------------|-------|---------------|-----------|---------------------|-------------------------|---------------------------------|--------------------------|----------------|
|                   |                  |                                         |             | Benzene        | Toluene        | Ethylbenzene | Total Xylenes | Total Phenolics | DDT+DDE+DDD | Aldrin + Dieldrin | Total Chlordane | Total Endosulfan | Endrin       | Heptachlor | Hexachlorobenze | Methoxychlor | Mirex | Chlorpyriphos | Total PCB | Asb_Sample_mas<br>s | FA and AF<br>Estimation | Asbestos ID in<br>soil >0.1g/kg | Trace Analysis<br>(NEPC) | Total Asbestos |
|                   |                  |                                         | PQL         | 0.2            | 0.5            | 1            | 1             | 5               | 0.1         | 0.1               | 0.1             | 0.1              | 0.1          | 0.1        | 0.1             | 0.1          | 0.1   | 0.1           | 0.1       |                     | 0.001                   |                                 |                          | 0.1            |
| Sample ID         | Depth            | FILL/ Natural                           | Sample Date | mg/kg          | mg/kg          | mg/kg        | mg/kg         | mg/kg           | mg/kg       | mg/kg             | mg/kg           | mg/kg            | mg/kg        | mg/kg      | mg/kg           | mg/kg        | mg/kg | mg/kg         | mg/kg     | g                   | %(w/w)                  | -                               | -                        | g/kg           |
| Supplementary     | Contamination I  | nvestigation (Doug                      | glas, 2024) |                |                |              |               |                 |             |                   |                 |                  |              |            |                 |              |       |               |           | •                   |                         |                                 |                          |                |
| BH101             | 0.4 - 0.5 m      | FILL/ SAND                              | 16/07/24    | <0.2           | <0.5           | <1           | <1            | -               | -           | -                 | -               | -                | -            | -          | -               | -            | -     | -             | -         | 695.94              | <0.001                  | NAD                             | NAD                      | <0.1           |
| Billot            | 0.4 0.5111       |                                         | 10/07/24    | 0.5 50         | 160 85         | 55 70        | 40 105        |                 |             |                   |                 |                  |              |            |                 |              |       |               |           |                     | 0.001 -                 | IVAD                            | TVAD                     | -0.1           |
| BH102             | 0.4 - 0.5 m      | FILL/SANDY                              | 16/07/24    | <0.2           | <0.5           | <1           | <1            | <5              | <0.1        | <0.1              | <0.1            | <0.1             | <0.1         | <0.1       | <0.1            | <0.1         | <0.1  | <0.1          | <0.1      | 430.29              | <0.001                  | NAD                             | NAD                      | <0.1           |
|                   |                  | SILT                                    | ,,.         | 0.5 50         | 160 85         | 55 70        | 40 105        | 100 -           | 240 180     | 6 -               | 50 -            | 270 -            | 10 -         | 6 -        | 10 -            | 300 -        | 10 -  | 160 -         | 1 -       |                     | 0.001 -                 |                                 |                          |                |
| BD1               | 0 m              | FILL/SANDY                              | 16/07/24    | <0.2           | <0.5           | <1           | <1            | -               | -           | -                 | -               | -                | -            | -          | -               | -            | -     | -             | -         | -                   | -                       | -                               | -                        | -              |
|                   |                  | SILT                                    |             | 0.5 50         |                | 55 70        | 40 105        |                 |             |                   |                 |                  |              |            |                 |              |       |               |           |                     |                         |                                 |                          | <del> </del>   |
| BH103             | 0 - 0.1 m        | FILL/SANDY<br>SILT                      | 16/07/24    | <0.2           | <0.5           | <1           | <1            | <5              | <0.1        | <0.1              | <0.1            | <0.1             | <0.1         | <0.1       | <0.1            | <0.1         | <0.1  | <0.1          | <0.1      | 371.7               | <0.001                  | NAD                             | NAD                      | <0.1           |
|                   |                  | FILL/SILTY                              |             | 0.5 50<br><0.2 | 160 85<br><0.5 | 55 70<br><1  | 40 105<br><1  | 100 -           | 240 180     | 6 -               | 50 -            | 270 -            | 10 -         | 6 -        | -               | 300 -        | 10 -  | 160 -         | -         | 419.25              | 0.001 -<br><0.001       |                                 |                          | <u> </u>       |
| BH103             | 0.8 - 1 m        | CLAY                                    | 16/07/24    | 0.5 50         | 160 85         | 55 70        | 40 105        |                 |             |                   |                 |                  |              |            | -               | -            |       | -             |           | 413.23              | 0.001                   | NAD                             | NAD                      | <0.1           |
|                   |                  | FILL/SANDY                              |             | <0.2           | <0.5           | <1           | <1            | -               | -           | -                 | -               | -                | -            |            | -               | -            | -     | -             | -         | 665.93              | <0.001                  |                                 |                          |                |
| BH104             | 0.4 - 0.5 m      | SILT                                    | 16/07/24    | 0.5 50         | 160 85         | 55 70        | 40 105        |                 |             |                   |                 |                  |              |            |                 |              |       |               |           |                     | 0.001 -                 | NAD                             | NAD                      | <0.1           |
|                   |                  | FILL/SILTY                              |             | <0.2           | <0.5           | <1           | <1            | <5              | <0.1        | <0.1              | <0.1            | <0.1             | <0.1         | <0.1       | <0.1            | <0.1         | <0.1  | <0.1          | <0.1      | 438.35              | <0.001                  |                                 |                          |                |
| BH105             | 0.4 - 0.5 m      | CLAY                                    | 16/07/24    | 0.5 50         |                | 55 70        | 40 105        | 100 -           | 240 180     | 6 -               | 50 -            | 270 -            | 10 -         | 6 -        | 10 -            | 300 -        | 10 -  | 160 -         | 1 -       |                     | 0.001 -                 | NAD                             | NAD                      | <0.1           |
| Detailed Site Inv | estigation (Doug | glas, 2023)                             |             |                |                |              |               |                 |             |                   |                 |                  |              |            |                 |              |       |               |           |                     |                         |                                 |                          |                |
|                   |                  |                                         |             | <0.2           | <0.5           | <1           | <1            | <5              | <0.1        | <0.1              | <0.1            | <0.1             | <0.1         | <0.1       | <0.1            | <0.1         | <0.1  | <0.1          | <0.1      |                     |                         |                                 |                          |                |
| BH01              | 0.5 - 0.6 m      | FILL/SAND                               | 27/09/23    | 0.5 50         | 160 85         | 55 70        | 40 105        | 100 -           | 240 180     | 6 -               | 50 -            | 270 -            | 10 -         | 6 -        | 10 -            | 300 -        | 10 -  | 160 -         | 1 -       | -                   | -                       | NAD                             | -                        | -              |
| BD01/20230927     | 0.5 - 0.6 m      | FILL/SAND                               | 27/09/23    | <0.2           | <0.5           | <1           | <1            | -               | -           | -                 | -               | -                | -            | -          | -               | -            | -     | -             | -         |                     | _                       | _                               | -                        | -              |
| BD01/20230927     | 0.5 - 0.6 111    | FILL/SAIND                              | 21/09/23    | 0.5 50         | 160 85         | 55 70        | 40 105        |                 |             |                   |                 |                  |              |            |                 |              |       |               |           |                     | -                       |                                 |                          |                |
| BH02              | 0.1 - 0.2 m      | FILL/CLAY                               | 27/09/23    | <0.2           | <0.5           | <1           | <1            | -               | -           | -                 | -               | -                | -            | -          | -               | -            | -     | -             | -         | -                   | -                       | NAD                             | -                        | -              |
|                   |                  |                                         |             | 0.5 50<br><0.2 | 160 85<br><0.5 | 55 70<br><1  | 40 105<br><1  |                 |             |                   |                 |                  |              |            |                 |              |       |               |           |                     |                         |                                 |                          | <u> </u>       |
| BH03              | 0.4 - 0.5 m      | CLAY                                    | 27/09/23    | 0.5 50         |                |              |               | -               | -           |                   |                 | -                |              | <u> </u>   | -               | <u> </u>     |       | -             |           | -                   | -                       | NAD                             | -                        | -              |
|                   |                  |                                         |             |                |                | 55 70        |               |                 | <0.1        | <0.1              | <0.1            | <0.1             | <0.1         | <0.1       | <0.1            | <0.1         | <0.1  |               |           |                     |                         |                                 |                          | <u> </u>       |
| BH04              | 0 - 0.1 m        | FILL/SANDY SILT                         | 27/09/23    | <0.2<br>0.5 50 | <0.5<br>160 85 | <1<br>55 70  | <1<br>40 105  | <5<br>100 -     | 240 180     | 6 -               | 50 -            | 270 -            | 10 -         | 6 -        | 10 -            | 300 -        | 10 -  | <0.1<br>160 - | <0.1      | -                   | -                       | NAD                             | -                        | -              |
| 51101             |                  | ======================================= |             | <0.2           | <0.5           | <1           | <1            | -               | - 100       | -                 | -               | -                | -            | -          | -               | -            | -     | -             | -         |                     |                         |                                 |                          |                |
| BH04              | 0.9 - 1 m        | FILL/SANDY SILT                         | 27/09/23    | 0.5 50         | 160 85         | 55 70        | 40 105        |                 |             |                   |                 |                  |              |            |                 |              |       |               |           | 1 -                 | -                       | NAD                             | -                        | -              |
| BH05              | 0.4 - 0.5 m      | FILL/SANDY SILT                         | 27/09/23    | <0.2           | <0.5           | <1           | <1            | <5              | <0.1        | <0.1              | <0.1            | <0.1             | <0.1         | <0.1       | <0.1            | <0.1         | <0.1  | <0.1          | <0.1      | _                   |                         | NAD                             | -                        | -              |
| 51100             | 0.4 0.0 111      |                                         | 21/00/20    | 0.5 50         | 160 85         | 55 70        | 40 105        | 100 -           | 240 180     | 6 -               | 50 -            | 270 -            | 10 -         | 6 -        | 10 -            | 300 -        | 10 -  | 160 -         | 1 -       |                     |                         | INAD                            |                          | <u> </u>       |



**Bold** = Lab detections -= Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Not limiting NAD = No Asbestos detected

HIL = Health investigation level | HSL = Health screening level (excluding DC) | EIL = Ecological investigation level | ESL = Ecological screening level | EGV = Environmental Guideline Value | ML = Management Limit | DC = Direct Contact HSL

#### Notes:

- QA/QC replicate of sample listed directly below the primary sample
- b Naphthalene reported as highest detection from the BTEXN or PAH suite, or if both results <PQL as lowest PQL
- c EIL criteria applies to DDT only

#### Site Assessment Criteria (SAC):

SAC based on generic land use thresholds for Residential A with garden/accessible soil

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

HIL - A (NEPC, 2013 or HEPA, 2020 (PFAS only))

HSL (vapour intrusion)

HSL-A/B (NEPC, 2013)

ESL

Urban Residential and Public Open Space (NEPC, 2013)

Direct contact HSL A Residential (Low density) (CRC CARE, 2011)

ML

Residential, Parkland and Public Open Space (NEPC, 2013)



Table F2: Summary of Laboratory Results – Metals, TRH, BTEX, PAH, Phenols, OCP, OPP, PCB, Asbestos

|                         |                 |                       |                |                |         |                | Metals |           |                        |        | Т           | RH          |         | Bī      | EX           |               |                           | P.                                | АН        |                | Phenols         | O                | CP                    | OPP                   | PCB       | Asbr                            | pestos                  |
|-------------------------|-----------------|-----------------------|----------------|----------------|---------|----------------|--------|-----------|------------------------|--------|-------------|-------------|---------|---------|--------------|---------------|---------------------------|-----------------------------------|-----------|----------------|-----------------|------------------|-----------------------|-----------------------|-----------|---------------------------------|-------------------------|
|                         |                 |                       |                | Total Arsenic  | Cadmium | Total Chromium | read   | TCLP Lead | Mercury<br>(inorganic) | Nickel | TRH C6 - C9 | TRH C10-C36 | Benzene | Toluene | Ethylbenzene | Total Xylenes | Benzo(a)pyrene<br>(B(a)P) | TCLP<br>Benzo(a)pyrene<br>(B(a)P) | Total PAH | TCLP Total PAH | Total Phenolics | Total Endosulfan | Total Analysed<br>OCP | Total Analysed<br>OPP | Total PCB | Asbestos ID in soil<br>>0.1g/kg | FA and AF<br>Estimation |
|                         |                 |                       | PQL            | 4              | 0.4     | 1              | 1      | 0.03      | 0.1                    | 1      | 25          | 50          | 0.2     | 0.5     | 1            | 1             | 0.05                      | 0.0001                            | 0.05      |                | 5               | 0.1              | 0.1                   | 0.1                   | 0.1       |                                 | 0.001                   |
| Sample ID               | Depth           | Fill / Natural        | Sample Date    | mg/kg          | mg/kg   | mg/kg          | mg/kg  | mg/kg     | mg/kg                  | mg/kg  | mg/kg       | mg/kg       | mg/kg   | mg/kg   | mg/kg        | mg/kg         | mg/kg                     | mg/kg                             | mg/kg     | mg/kg          | mg/kg           | mg/kg            | mg/kg                 | mg/kg                 | mg/kg     | -                               | %(w/w)                  |
| Supplementa             | ary Contamina   | ition Investigation ( | (Douglas, 2024 | <del>(</del> ) |         |                |        |           |                        |        |             |             |         | -       |              |               |                           |                                   |           |                |                 |                  |                       |                       |           |                                 |                         |
| BH101                   | 0.4 - 0.5 m     | FILL/SAND             | 16/07/24       | 10             | <0.4    | 18             | 15     | -         | <0.1                   | 3      | <25         | 300         | <0.2    | <0.5    | <1           | <1            | <0.05                     | -                                 | <0.05     | -              | -               | -                | -                     | -                     | -         | NAD                             | <0.001                  |
| BH102                   | 0.4 - 0.5 m     | FILL / SANDY SILT     | 16/07/24       | 6              | <0.4    | 13             | 50     | -         | <0.1                   | 2      | <25         | <50         | <0.2    | <0.5    | <1           | <1            | <0.05                     | -                                 | <0.05     | -              | <5              | <0.1             | <0.1                  | <0.1                  | <0.1      | NAD                             | <0.001                  |
| BD1                     | 0 m             | FILL / SANDY SILT     | 16/07/24       | 6              | <0.4    | 13             | 17     | -         | <0.1                   | 2      | <25         | <50         | <0.2    | <0.5    | <1           | <1            | <0.05                     | -                                 | <0.05     | -              | -               | -                | -                     | -                     | -         | -                               | -                       |
| BH103                   | 0 - 0.1 m       | FILL / SANDY SILT     | 16/07/24       | 10             | <0.4    | 17             | 350    | -         | 0.2                    | 9      | <25         | 470         | <0.2    | <0.5    | <1           | <1            | 0.53                      | -                                 | 4.5       | -              | <5              | <0.1             | <0.1                  | <0.1                  | <0.1      | NAD                             | <0.001                  |
| BH103                   | 0.8 - 1 m       | FILL/SILTY CLAY       | 16/07/24       | 20             | <0.4    | 29             | 26     | -         | <0.1                   | 2      | <25         | <50         | <0.2    | <0.5    | <1           | <1            | <0.05                     | -                                 | <0.05     | -              | -               | -                | -                     | -                     | -         | NAD                             | <0.001                  |
| BH104                   | 0.4 - 0.5 m     | FLL/ SANDY SILT       | 16/07/24       | 15             | <0.4    | 30             | 20     | -         | <0.1                   | 3      | <25         | <50         | <0.2    | <0.5    | <1           | <1            | <0.05                     | -                                 | <0.05     | -              | -               | -                | -                     | -                     | -         | NAD                             | <0.001                  |
| BH105                   | 0.4 - 0.5 m     | FILL/ SILTY CLAY      | 16/07/24       | 9              | <0.4    | 20             | 20     | -         | <0.1                   | 2      | <25         | <50         | <0.2    | <0.5    | <1           | <1            | <0.05                     | -                                 | <0.05     | -              | <5              | <0.1             | <0.1                  | <0.1                  | <0.1      | NAD                             | <0.001                  |
| BH102 -<br>[TRIPLICATE] | 0.4 - 0.5 m     | FILL/ SANDY SILT      | 16/07/24       | 5              | <0.4    | 12             | 41     | -         | <0.1                   | 2      | -           | -           | -       | -       | -            | -             | -                         | -                                 | -         | -              | -               | -                | -                     | -                     | -         | -                               | -                       |
| Detailed Site           | Investigation   | (Douglas, 2023)       |                |                |         |                |        |           |                        |        | I.          |             |         | 1       |              |               |                           |                                   |           | l              | I               | I .              |                       |                       | l .       |                                 |                         |
| BH01                    | 0.5 - 0.6 m     | FILL / SAND           | 27/09/23       | 10             | <0.4    | 33             | 23     | -         | 0.1                    | 17     | <25         | 1200        | <0.2    | <0.5    | <1           | <1            | 7                         | <0.0001                           | 64        | 0.002          | <5              | <0.1             | <0.1                  | <0.1                  | <0.1      | NAD                             | -                       |
| BD01/2023092<br>7       | 0.5 - 0.6 m     | FILL / SAND           | 27/09/23       | 5              | <0.4    | 18             | 19     | -         | <0.1                   | 22     | <25         | 1200        | <0.2    | <0.5    | <1           | <1            | 6.4                       | <0.0001                           | 56        | 0.0024         | -               | -                | -                     | -                     | -         | -                               | -                       |
| BH02                    | 0.1 - 0.2 m     | FILL / CLAY           | 27/09/23       | 8              | <0.4    | 15             | 23     | -         | <0.1                   | 6      | <25         | 560         | <0.2    | <0.5    | <1           | <1            | 0.1                       | -                                 | 1         | -              | -               | -                | -                     | -                     | -         | NAD                             | -                       |
| BH03                    | 0.4 - 0.5 m     | CLAY                  | 27/09/23       | 10             | <0.4    | 26             | 24     | -         | <0.1                   | 9      | <25         | 650         | <0.2    | <0.5    | <1           | <1            | 1.4                       | <0.0001                           | 14        | 0.0004         | -               | -                | -                     | -                     | -         | NAD                             | -                       |
| BH04                    | 0 - 0.1 m       | FILL / SANDY SILT     | 27/09/23       | 5              | <0.4    | 10             | 53     | -         | <0.1                   | 8      | <25         | 500         | <0.2    | <0.5    | <1           | <1            | 0.2                       | -                                 | 2.1       | -              | <5              | <0.1             | <0.1                  | <0.1                  | <0.1      | NAD                             | -                       |
| BH04                    | 0.9 - 1 m       | FILL / SANDY SILT     | 27/09/23       | 12             | <0.4    | 30             | 77     | -         | 0.1                    | 6      | <25         | 220         | <0.2    | <0.5    | <1           | <1            | 0.2                       | -                                 | 1.8       | -              | -               | -                | -                     | -                     | -         | NAD                             | -                       |
| BH05                    | 0.4 - 0.5 m     | FILL / SANDY SILT     | 27/09/23       | 8              | <0.4    | 15             | 130    | 0.06      | 0.1                    | 6      | <25         | 370         | <0.2    | <0.5    | <1           | <1            | 0.71                      | -                                 | 6.2       | -              | <5              | <0.1             | <0.1                  | <0.1                  | <0.1      | NAD                             | -                       |
| Waste Classific         | cation Criteria | 1                     | •              |                |         | •              |        |           |                        | '      |             |             |         | '       |              |               |                           |                                   |           | •              |                 |                  |                       | 1                     |           |                                 |                         |
|                         |                 | СП                    |                | 100            | 20      | 100            | 100    | -         | 4                      | 40     | 650         | 10,000      | 10      | 288     | 600          | 1000          | 0.8                       | -                                 | 200       | -              | 288             | 60               | -                     | 4                     | <50       | NAD                             | -                       |
|                         |                 | SCC1                  |                | 500            | 100     | 1,900          | 1,500  | -         | 50                     | 1,050  | 650         | 10,000      | 18      | 518     | 1,080        | 1,800         | 10                        | -                                 | 200       | -              | 518             | 108              | -                     | 7.5                   | <50       | NAD                             | -                       |
|                         |                 | TCLP1                 |                | -              | -       | -              | -      | 5         | -                      | -      | -           | -           | -       | -       | -            | -             | -                         | 0.04                              | -         | -              | -               | -                | -                     | -                     | -         | -                               | -                       |
|                         |                 | CT2                   |                | 400            | 80      | 400            | 400    | -         | 16                     | 160    | 2,600       | 40,000      | 40      | 1,152   | 2,400        | 4,000         | 3.2                       | -                                 | 800       | -              | 1,152           | 240              | -                     | 16                    | <50       | NAD                             | -                       |
|                         |                 | SCC2                  |                | 2,000          | 400     | 7,600          | 6,000  | -         | 200                    | 4,200  | 2,600       | 40,000      | 72      | 2,073   | 4,320        | 7,200         | 23                        | -                                 | 800       | -              | 2,073           | 432              | -                     | 30                    | <50       | NAD                             | -                       |
|                         |                 | TCLP2                 |                | -              | -       | -              | -      | 20        | -                      | -      | -           | -           | -       | -       | -            | -             | -                         | 0.16                              | -         | -              | -               | -                | -                     | -                     | -         | -                               |                         |

☐ CTI exceedance ☐ TCLP1 and/or SCC1 exceedance ☐ CT2 exceedance ☐ TCLP2 and/or SCC2 exceedance ☐ Asbestos detection

- = Not tested, no criteria or not applicable NAD = no asbestos detected

#### Notes:

- a QA/QC replicate of sample listed directly below the primary sample
- $b \hspace{1cm} \hbox{Total chromium used as initial screen for chromium (VI)}.$
- C Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH)
- d Criteria for scheduled chemicals used as an initial screen
- e Criteria for Chlorpyrifos used as initial screen
- f NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste
- PQL Practical quantitation limit
- CTI Maximum values of specific contaminant concentration (SCC) for classification without TCLP: General solid waste
- SCCI Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste
- TCLP1 Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste
- CT2 Maximum values of specific contaminant concentration (SCC) for classification without TCLP: Restricted solid waste
- SCC2 Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste
- TCLP2 Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste

## Appendix G

Borehole Logs

CLIENT: School Infrastructure NSW

Proposed Multi-Purpose Medium Hall PROJECT:

38-54 and 66 Eton Street, Sutherland LOCATION:

**SURFACE LEVEL: 112.4 AHD** 

**EASTING:** 320800.2 **NORTHING:** 6232529.2

**DIP/AZIMUTH:** 90°/--

**BORE No:** BH01

**PROJECT No: 224456.00** 

**DATE:** 27/9/2023 SHEET 1 OF 1

| Γ      |                       |             | Description                                                                                                                                                                   | . <u>S</u>     |      | Sam    |        | & In Situ Testing     |       | Well         |
|--------|-----------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|--------|--------|-----------------------|-------|--------------|
| Ζ      | De <sub>l</sub><br>(n | pth  <br>n) | of                                                                                                                                                                            | Graphic<br>Log | Туре | Depth  | Sample | Results &<br>Comments | Water | Construction |
| L      | ,                     |             | Strata                                                                                                                                                                        | Ō              | Ţ    | De     | San    | Comments              |       | Details      |
| -      | -                     | 0.1         | ASPHALTIC CONCRETE                                                                                                                                                            |                |      | 0.1    |        |                       |       | -            |
| -      | -                     | 0.05        | FILL/ Gravelly SAND: fine to coarse, grey to dark grey, fine to medium angular igneous gravel, dry, apparently well compacted                                                 |                | E    | 0.2    |        |                       |       | -            |
| 112    | -                     | 0.35        | FILL/ SAND: fine to medium, dark grey, with clay nodules,                                                                                                                     |                |      |        |        |                       |       |              |
| ŀ      | -                     |             | moist                                                                                                                                                                         |                | E*   | 0.5    |        |                       |       |              |
| ŀ      |                       | 0.6         | CLAY CI-CH: medium to high plasticity, red-brown and pale grey, w <pl, residual<="" stiff,="" th=""><th></th><th></th><th>0.6</th><th></th><th></th><th></th><th>-</th></pl,> |                |      | 0.6    |        |                       |       | -            |
| ŀ      | -                     |             |                                                                                                                                                                               |                | E    | 0.9    |        |                       |       |              |
| -      | - 1<br>-              |             | Below 1.0m: very stiff                                                                                                                                                        |                |      | 1.0    |        |                       |       | -1<br>-      |
| }      | -                     |             |                                                                                                                                                                               |                | S    |        |        | 3,7,10<br>N = 17      |       | -            |
| +=     | -                     |             |                                                                                                                                                                               |                |      | 1.45   |        |                       |       | _            |
| ļ      |                       |             |                                                                                                                                                                               |                |      |        |        |                       |       |              |
| }      | -                     |             |                                                                                                                                                                               |                |      |        |        |                       |       | -            |
| ł      | -                     |             |                                                                                                                                                                               |                |      |        |        |                       |       | _            |
|        | -2                    |             |                                                                                                                                                                               |                |      |        |        |                       |       | -2           |
| -      | -                     |             |                                                                                                                                                                               |                |      |        |        |                       |       | -            |
| ŀ      | -                     |             |                                                                                                                                                                               |                |      |        |        |                       |       | -            |
| 110    |                       | 2.4         |                                                                                                                                                                               |                |      |        |        |                       |       |              |
| -      | -                     | 2.4         | SHALE: dark grey and orange-brown, very low strength, highly weathered, Hawkesbury Sandstone                                                                                  |                |      | 2.5    |        |                       |       |              |
| ŀ      | -                     |             | Below 2.6m: low strength                                                                                                                                                      |                | S    |        |        | 10,25/100<br>refusal  |       | -            |
| t      |                       | 2.75        | Bore discontinued at 2.75m                                                                                                                                                    | <u> </u>       |      | -2.75- |        | relasai               |       | -            |
| [      |                       |             | Refusal                                                                                                                                                                       |                |      |        |        |                       |       |              |
| ŀ      | -3                    |             |                                                                                                                                                                               |                |      |        |        |                       |       | -3           |
| ł      | -                     |             |                                                                                                                                                                               |                |      |        |        |                       |       | -            |
|        |                       |             |                                                                                                                                                                               |                |      |        |        |                       |       |              |
| 109    | -                     |             |                                                                                                                                                                               |                |      |        |        |                       |       | -            |
| ŀ      | -                     |             |                                                                                                                                                                               |                |      |        |        |                       |       |              |
| ŀ      | -                     |             |                                                                                                                                                                               |                |      |        |        |                       |       | -            |
|        |                       |             |                                                                                                                                                                               |                |      |        |        |                       |       |              |
| -      | -                     |             |                                                                                                                                                                               |                |      |        |        |                       |       | -            |
| ŀ      | -4                    |             |                                                                                                                                                                               |                |      |        |        |                       |       | -4           |
| ţ      | Į                     |             |                                                                                                                                                                               |                |      |        |        |                       |       |              |
| Ĺ      | -                     |             |                                                                                                                                                                               |                |      |        |        |                       |       |              |
| 108    | _                     |             |                                                                                                                                                                               |                |      |        |        |                       |       |              |
| -      | -                     |             |                                                                                                                                                                               |                |      |        |        |                       |       |              |
| ļ      |                       |             |                                                                                                                                                                               |                |      |        |        |                       |       |              |
| -      | -                     |             |                                                                                                                                                                               |                |      |        |        |                       |       |              |
| +      | -                     |             |                                                                                                                                                                               |                |      |        |        |                       |       |              |
| $\Box$ |                       |             |                                                                                                                                                                               |                |      |        | l      | l                     | L     |              |

LOGGED: TM **CASING:** Uncased RIG: Comacchio 205 DRILLER: DB

**TYPE OF BORING:** Solid flight auger to 2.5m

WATER OBSERVATIONS: No free groundwater observed **REMARKS:** \*BD01/20230927TM Taken from 0.5-0.6m

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturb Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level Core drilling
Disturbed sample
Environmental sample



CLIENT: School Infrastructure NSW

Proposed Multi-Purpose Medium Hall PROJECT:

38-54 and 66 Eton Street, Sutherland LOCATION:

SURFACE LEVEL: 112.8 AHD

**BORE No:** BH02 **PROJECT No: 224456.00 EASTING**: 320819

**NORTHING:** 6232525.6 **DATE:** 27/9/2023 **DIP/AZIMUTH:** 90°/--SHEET 1 OF 1

|                        | _         |             | Description                                                                                                                                                                                                          | je                           |      | Sam        |        | & In Situ Testing       | _     | Well         |
|------------------------|-----------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------|------------|--------|-------------------------|-------|--------------|
| R                      | Dep<br>(m | otn  <br>1) | of                                                                                                                                                                                                                   | Graphic<br>Log               | Туре | Depth      | Sample | Results &<br>Comments   | Water | Construction |
| Ц                      |           |             | Strata                                                                                                                                                                                                               | Θ                            | F    | De         | Sar    | Comments                |       | Details      |
|                        |           | 0.1         | ASPHALTIC CONCRETE                                                                                                                                                                                                   | $\times\!\!\times\!\!\times$ | _    | 0.1        |        |                         |       | -            |
| $\left  \cdot \right $ |           | 0.2         | FILL/ CLAY: medium plasticity, red-brown and brown,<br>\trace fine to medium angular igneous gravel, w <pl< td=""><td><math>\rightarrow</math></td><td>Е</td><td>0.2</td><td></td><td></td><td></td><td>-</td></pl<> | $\rightarrow$                | Е    | 0.2        |        |                         |       | -            |
| +                      | -         |             | CLAY CI-CH: medium to high plasticity, red-brown and pale grey, w <pl, residual<="" stiff,="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>                                            |                              |      |            |        |                         |       |              |
|                        |           |             | pale grey, w <pl, residual<="" stiff,="" td=""><td>///</td><td></td><td>0.5</td><td></td><td></td><td></td><td></td></pl,>                                                                                           | ///                          |      | 0.5        |        |                         |       |              |
|                        |           |             |                                                                                                                                                                                                                      |                              | E    | 0.6        |        |                         |       | -            |
| +                      | -         |             |                                                                                                                                                                                                                      | ///                          |      |            |        |                         |       | -            |
| 112                    |           |             |                                                                                                                                                                                                                      |                              |      | 0.0        |        |                         |       |              |
|                        | - 1       |             |                                                                                                                                                                                                                      | ///                          | Е    | 0.9<br>1.0 |        |                         |       | -1           |
| -                      |           |             | Below 1.0m: very stiff to hard                                                                                                                                                                                       |                              |      | 1.0        |        |                         |       | -            |
| +                      | -         |             |                                                                                                                                                                                                                      |                              | s    |            |        | 6,12,15<br>N = 27       |       |              |
| 1                      | •         |             |                                                                                                                                                                                                                      |                              | 1    |            |        |                         |       | -            |
|                        |           |             |                                                                                                                                                                                                                      |                              |      | 1.45       |        |                         |       | -            |
| -                      | -         |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       | -            |
| +                      |           |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       | -            |
| -1-                    | -         |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       | -            |
|                        | -2        |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       | -2           |
| $ \cdot $              |           |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       | -            |
| $\left  \cdot \right $ |           |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       | -            |
|                        |           | 2.3         | SHALE: dark grey and orange-brown, very low strength, highly weathered, Hawkesbury Sandstone                                                                                                                         |                              |      |            |        |                         |       |              |
|                        |           |             | highly weathered, Hawkesbury Sandstone                                                                                                                                                                               |                              |      | 2.5        |        |                         |       |              |
| -                      | -         |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       | -            |
|                        |           |             | Below 2.7m: low strength                                                                                                                                                                                             |                              | S    |            |        | 12,25,20/100<br>refusal |       | _            |
| 110                    |           | 2.9         |                                                                                                                                                                                                                      | ===                          |      | -2.9-      |        |                         |       |              |
|                        | -3        | 2.5         | Bore discontinued at 2.9m<br>Refusal                                                                                                                                                                                 |                              |      | 2.9        |        |                         |       | -3           |
| +                      |           |             | Nelusai                                                                                                                                                                                                              |                              |      |            |        |                         |       | -            |
| +                      | -         |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       |              |
|                        |           |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       |              |
|                        |           |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       | -            |
| +                      | -         |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       | -            |
| -                      |           |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       | -            |
| 109                    |           |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       |              |
|                        | -4        |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       | -4           |
| +                      | -         |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       | _            |
| }                      | -         |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       |              |
|                        | -         |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       |              |
|                        | -         |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       |              |
| }                      |           |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       | -            |
| +_                     | -         |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       |              |
| 108                    | -         |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       |              |
|                        |           |             |                                                                                                                                                                                                                      |                              |      |            |        |                         |       |              |

LOGGED: TM **CASING:** Uncased RIG: Comacchio 205 DRILLER: DB

**TYPE OF BORING:** Solid flight auger to 2.5m

WATER OBSERVATIONS: No free groundwater observed

**REMARKS:** 

| SAMPLING & IN SITU TESTING LEGENI |
|-----------------------------------|
|-----------------------------------|

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturb Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level Core drilling
Disturbed sample
Environmental sample



School Infrastructure NSW CLIENT:

**PROJECT:** Proposed Multi-Purpose Medium Hall LOCATION:

38-54 and 66 Eton Street, Sutherland

**SURFACE LEVEL:** 112.3 AHD

**EASTING:** 320805.7

**NORTHING:** 6232519.7 **DIP/AZIMUTH:** 90°/--

**BORE No: BH03** 

**PROJECT No: 224456.00** 

**DATE:** 27/9/2023 SHEET 1 OF 1

| П        |     |      | Description                                                                                                                                                                            | 0              |      | Sam          | nplina 8 | & In Situ Testing     |       | Well                  |
|----------|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|--------------|----------|-----------------------|-------|-----------------------|
| 씸        | De  | pth  | Description<br>of                                                                                                                                                                      | Graphic<br>Log | (t)  |              |          |                       | Water | Vveii<br>Construction |
| ۳        | (n  | n)   | Strata                                                                                                                                                                                 | Gra            | Type | Depth        | Sample   | Results &<br>Comments | Š     | Details               |
| H        |     |      | ASPHALTIC CONCRETE                                                                                                                                                                     |                |      |              | S        |                       |       |                       |
| 112      |     | 0.1  | FILL/ Gravelly SAND: fine to medium, dark grey, fine to medium angular igneous gravel, dry, apparently well compacted                                                                  |                | Е    | 0.1          |          |                       |       | -                     |
|          |     |      | CLAY CI-CH: medium to high plasticity, red-brown and pale grey, w <pl, residual<="" stiff,="" td=""><td></td><td>E</td><td>0.4<br/>0.5</td><td></td><td></td><td></td><td>-</td></pl,> |                | E    | 0.4<br>0.5   |          |                       |       | -                     |
|          |     |      |                                                                                                                                                                                        |                | U    | 0.7          |          |                       |       |                       |
| -        | -1  |      | Below 1.0m: very stiff to hard                                                                                                                                                         |                | E    | 0.9<br>1.0   |          |                       |       | -1                    |
| 11-      |     |      |                                                                                                                                                                                        |                | S    |              |          | 6,14,16<br>N = 30     |       |                       |
|          |     |      |                                                                                                                                                                                        |                |      | 1.45         |          |                       |       | -                     |
|          |     |      |                                                                                                                                                                                        |                |      |              |          |                       |       | -                     |
| -        | -2  |      |                                                                                                                                                                                        |                |      |              |          |                       |       | -2<br>-               |
| 110      |     | 2.3  | SHALE: dark grey and orange-brown, very low strength.                                                                                                                                  |                |      |              |          |                       |       |                       |
| ţţ       |     |      | SHALE: dark grey and orange-brown, very low strength, highly weathered, Hawkesbury Sandstone                                                                                           | ===            |      | 2.5          |          | 10/50                 |       |                       |
|          |     | 2.55 | Below 2.5m: low strength                                                                                                                                                               |                | s    | 2.5<br>-2.55 |          | refusal               |       | -                     |
| } }      |     |      | Bore discontinued at 2.55m<br>Refusal                                                                                                                                                  |                |      |              |          |                       |       | -                     |
| } }      |     |      | Nordoca                                                                                                                                                                                |                |      |              |          |                       |       | -                     |
| Ħ        | 2   |      |                                                                                                                                                                                        |                |      |              |          |                       |       | -                     |
|          | - 3 |      |                                                                                                                                                                                        |                |      |              |          |                       |       | -3                    |
| -        |     |      |                                                                                                                                                                                        |                |      |              |          |                       |       | -                     |
| 109      |     |      |                                                                                                                                                                                        |                |      |              |          |                       |       | -                     |
| 1        |     |      |                                                                                                                                                                                        |                |      |              |          |                       |       | -                     |
|          |     |      |                                                                                                                                                                                        |                |      |              |          |                       |       |                       |
|          |     |      |                                                                                                                                                                                        |                |      |              |          |                       |       | -                     |
| } }      |     |      |                                                                                                                                                                                        |                |      |              |          |                       |       | -                     |
|          | ,   |      |                                                                                                                                                                                        |                |      |              |          |                       |       |                       |
|          | -4  |      |                                                                                                                                                                                        |                |      |              |          |                       |       | -4                    |
|          |     |      |                                                                                                                                                                                        |                |      |              |          |                       |       |                       |
| 108      |     |      |                                                                                                                                                                                        |                |      |              |          |                       |       | -                     |
| <b> </b> |     |      |                                                                                                                                                                                        |                |      |              |          |                       |       |                       |
| [        |     |      |                                                                                                                                                                                        |                |      |              |          |                       |       |                       |
|          |     |      |                                                                                                                                                                                        |                |      |              |          |                       |       |                       |
| } }      |     |      |                                                                                                                                                                                        |                |      |              |          |                       |       |                       |
| }        |     |      |                                                                                                                                                                                        |                |      |              |          |                       |       |                       |
| ш        |     |      |                                                                                                                                                                                        |                | I    |              |          |                       |       |                       |

LOGGED: TM **CASING:** Uncased RIG: Comacchio 205 DRILLER: DB

**TYPE OF BORING:** Solid flight auger to 2.5m

WATER OBSERVATIONS: No free groundwater observed

**REMARKS:** 

| SAMPLING | 3 & IN SITU TES | STING LEGI | END  |
|----------|-----------------|------------|------|
| G        | Gas sample      | PID        | Phot |

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level



CLIENT: School Infrastructure NSW

Proposed Multi-Purpose Medium Hall PROJECT:

38-54 and 66 Eton Street, Sutherland LOCATION:

**SURFACE LEVEL: 111.6 AHD** 

**EASTING:** 320795.6

**NORTHING:** 6232498.8 **DIP/AZIMUTH:** 90°/--

**BORE No: BH04** 

**PROJECT No: 224456.00** 

**DATE:** 27/9/2023 SHEET 1 OF 1

|     |                | Description                                                                                                                                                                                                                         | ٥.             |      | Sampling & In Situ Testing |        |                         |       | Well                  |
|-----|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|----------------------------|--------|-------------------------|-------|-----------------------|
| 묍   | Depth<br>(m)   | of<br>Strata                                                                                                                                                                                                                        | Graphic<br>Log | Type | Depth                      | Sample | Results &<br>Comments   | Water | Construction  Details |
| 111 |                | FILL/ Sandy SILT: low plasticity, brow to dark grey, trace rootlets                                                                                                                                                                 |                | E    | 0.1 0.2 0.4 0.5            | S      |                         |       | -                     |
|     | - 1<br>. 1.3 - | CLAY CI-CH: medium to high plasticity, red-brown and pale grey, w <pl, residual<="" stiff="" stiff,="" td="" to="" very=""><td></td><td>E*</td><td>0.9</td><td></td><td>2,2,6<br/>N = 8</td><td></td><td>-<br/>-1<br/>-1</td></pl,> |                | E*   | 0.9                        |        | 2,2,6<br>N = 8          |       | -<br>-1<br>-1         |
| 110 | -2             |                                                                                                                                                                                                                                     |                | E    | 1.43<br>1.5<br>1.6<br>1.9  |        |                         |       | -2                    |
| 109 |                | SHALE: dark grey and orange-brown, low strength, highly weathered, Hawkesbury Sandstone                                                                                                                                             |                | S    | 2.5                        |        | 11,20,25/100<br>refusal |       |                       |
| 108 | -3             | Weathered, Hawkesbury Sandstone  Bore discontinued at 2.9m  Refusal                                                                                                                                                                 |                |      | 2.9                        |        |                         |       | -3                    |
| 107 | -4             |                                                                                                                                                                                                                                     |                |      |                            |        |                         |       | -4                    |
| -   |                |                                                                                                                                                                                                                                     |                |      |                            |        |                         |       | -                     |

LOGGED: TM **CASING:** Uncased RIG: Comacchio 205 DRILLER: DB

**TYPE OF BORING:** Solid flight auger to 2.5m

WATER OBSERVATIONS: No free groundwater observed **REMARKS:** \*BD02/20230927TM Taken from 0.9-1.0m

| SAMPLING & IN S | SITU T | ESTING | LEGE | ND  |
|-----------------|--------|--------|------|-----|
| G Gas sa        | mnle   |        | PID  | Pho |

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level



CLIENT: School Infrastructure NSW

**PROJECT:** Proposed Multi-Purpose Medium Hall LOCATION:

38-54 and 66 Eton Street, Sutherland

**SURFACE LEVEL:** 111.7 AHD

**EASTING:** 320807.2 **NORTHING:** 6232493.5

**DIP/AZIMUTH:** 90°/--

**BORE No:** BH05

**PROJECT No: 224456.00** 

**DATE:** 27/9/2023 SHEET 1 OF 1

|            |              | T                                                                                                                                                                                    |                              | Sampling & In Situ Testing |             |                   |                       | 1     | The state of the s |  |
|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------|-------------|-------------------|-----------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|            | Donth        | Description                                                                                                                                                                          | Graphic<br>Log               |                            |             | ¼ In Situ Testing | <u></u>               | Well  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| R          | Depth<br>(m) | of                                                                                                                                                                                   | Log                          | Туре                       | Depth       | Sample            | Results &<br>Comments | Water | Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|            |              | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -                                                                                                                                              | <u>o</u>                     | Ļ                          |             | San               | Comments              | Ĺ     | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|            |              | FILL/ Sandy SILT: low plasticity, brown to dark grey, trace                                                                                                                          | XX                           | Е                          | 0.0<br>0.1  |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            |              | rootlets                                                                                                                                                                             | $\times\!\!\times\!\!\times$ |                            | 0.1         |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            |              |                                                                                                                                                                                      | XX                           |                            |             |                   |                       |       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|            |              |                                                                                                                                                                                      | XX                           |                            | 0.4         |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| } }        |              |                                                                                                                                                                                      | $\times\!\!\times\!\!\times$ | E                          | 0.5         |                   |                       |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| } }        | . 0          | 0.6 CLAY CLCH; modium to high placticity, rod brown and                                                                                                                              | $\nearrow \nearrow$          |                            |             |                   |                       |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| -=         |              | CLAY CI-CH: medium to high plasticity, red-brown and pale grey, w <pl, residual<="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-  </td></pl,> |                              |                            |             |                   |                       |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| <b>†</b> † |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| † †        |              |                                                                                                                                                                                      | ///                          | E                          | 0.9         |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Ιİ         | -1           |                                                                                                                                                                                      |                              |                            | 1.0         |                   |                       |       | F <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|            |              |                                                                                                                                                                                      |                              |                            |             |                   | 6.8.10                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            |              |                                                                                                                                                                                      |                              | S                          |             |                   | 6,8,10<br>N = 18      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|            |              |                                                                                                                                                                                      |                              |                            | 1.45        |                   |                       |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| } }        |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 110        |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| <b>}</b>   |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 1          |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|            | -2           |                                                                                                                                                                                      |                              |                            |             |                   |                       |       | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Ιİ         |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            | . 2          | 2.5                                                                                                                                                                                  | ///                          | S                          | 2.5         |                   | 10/50                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| } }        | 2.5          | 2.5<br>SHALE: dark grey and orange-brown, low strength, highly weathered, Hawkesbury Sandstone                                                                                       |                              |                            | 2.5<br>2.55 |                   | refusal               |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 109        |              | Bore discontinued at 2.55m                                                                                                                                                           |                              |                            |             |                   |                       |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| <b>}</b>   |              | Refusal                                                                                                                                                                              |                              |                            |             |                   |                       |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| <b>†</b> † |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            | -3           |                                                                                                                                                                                      |                              |                            |             |                   |                       |       | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|            |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| } }        |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 108        |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| } }        |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| + +        |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            | -4           |                                                                                                                                                                                      |                              |                            |             |                   |                       |       | -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|            |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| [ ]        |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| [          |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 107        |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| }          |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Ш          |              |                                                                                                                                                                                      |                              |                            |             |                   |                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

LOGGED: TM **CASING:** Uncased RIG: Comacchio 205 DRILLER: DB

**TYPE OF BORING:** Solid flight auger to 2.5m

WATER OBSERVATIONS: No free groundwater observed

**REMARKS:** 

| SAMPLING | & IN SITU  | TESTING | LEGE | END  |
|----------|------------|---------|------|------|
| G        | Gas sample |         | PID  | Phot |

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level



CLIENT: School Infrastructure NSW

**PROJECT:** Proposed Multi-Purpose Medium Hall

38-54 and 66 Eton Street, Sutherland LOCATION:

**SURFACE LEVEL:** 110.7 AHD

**EASTING:** 320826.7 **NORTHING:** 6232448.5

**DIP/AZIMUTH:** 90°/--

**BORE No:** BH06

**PROJECT No: 224456.00** 

**DATE:** 27/9/2023 SHEET 1 OF 1

|     |              |     | Description                                                                                                                                                               | .je            | Sampling & In Situ Testing |        |        |                        |       | Well         |
|-----|--------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------|--------|--------|------------------------|-------|--------------|
| 씸   | Depth<br>(m) | ו   | of                                                                                                                                                                        | Graphic<br>Log | Туре                       | Depth  | Sample | Results &<br>Comments  | Water | Construction |
| Ш   |              |     | Strata                                                                                                                                                                    | U              |                            |        | Sar    | Comments               |       | Details      |
| -   | -<br>- 0.:   |     | FILL/ SAND: medium, grey-brown, with clay, trace tile fragments, moist                                                                                                    |                | E                          | 0.0    |        |                        |       | -            |
|     | - 0          |     | CLAY CI-CH: medium to high plasticity, red-brown and pale grey, w <pl, residual<="" stiff,="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,> |                |                            |        |        |                        |       |              |
|     |              |     |                                                                                                                                                                           |                | E                          | 0.4    |        |                        |       | -            |
| 110 |              |     |                                                                                                                                                                           |                |                            |        |        |                        |       |              |
| -   | -            |     |                                                                                                                                                                           |                |                            |        |        |                        |       | -            |
|     | -<br>- 1     |     | Below 1.0m: very stiff                                                                                                                                                    |                | E                          | 0.9    |        |                        |       | -1           |
|     |              |     | Delow 1.011. very Suit                                                                                                                                                    |                |                            |        |        | 7.10.15                |       |              |
| -   | -            |     |                                                                                                                                                                           |                | S                          |        |        | 7,10,15<br>N = 25      |       | -            |
|     | -            |     |                                                                                                                                                                           |                | <del> </del>               | 1.45   |        |                        |       |              |
| 109 | -<br>-       |     |                                                                                                                                                                           |                |                            |        |        |                        |       |              |
|     |              |     |                                                                                                                                                                           |                |                            |        |        |                        |       |              |
|     | -2           |     |                                                                                                                                                                           |                |                            |        |        |                        |       | -2           |
|     |              |     |                                                                                                                                                                           |                |                            |        |        |                        |       | -            |
|     | 2.3          | .3  | SHALE: dark grey and orange-brown, very low strength, highly weathered, Hawkesbury Sandstone                                                                              |                |                            |        |        |                        |       |              |
| -   |              |     | highly weathered, Hawkesbury Sandstone                                                                                                                                    |                |                            | 2.5    |        |                        |       | -            |
| 108 |              |     | D. 67                                                                                                                                                                     |                | S                          |        |        | 10,27,10/50<br>refusal |       | -            |
|     | 2.8          | 5 – | Below 2.7m: low strength  Bore discontinued at 2.85m                                                                                                                      | ===            |                            | -2.85- |        |                        |       |              |
| -   | -3           |     | Refusal                                                                                                                                                                   |                |                            |        |        |                        |       | -3           |
|     | -            |     |                                                                                                                                                                           |                |                            |        |        |                        |       | -            |
|     |              |     |                                                                                                                                                                           |                |                            |        |        |                        |       |              |
| -   | -            |     |                                                                                                                                                                           |                |                            |        |        |                        |       | -            |
| 107 |              |     |                                                                                                                                                                           |                |                            |        |        |                        |       |              |
|     |              |     |                                                                                                                                                                           |                |                            |        |        |                        |       |              |
|     | -4           |     |                                                                                                                                                                           |                |                            |        |        |                        |       | -4           |
| -   |              |     |                                                                                                                                                                           |                |                            |        |        |                        |       |              |
|     | -            |     |                                                                                                                                                                           |                |                            |        |        |                        |       |              |
| -   | -            |     |                                                                                                                                                                           |                |                            |        |        |                        |       |              |
| 106 | -            |     |                                                                                                                                                                           |                |                            |        |        |                        |       |              |
| -   | -            |     |                                                                                                                                                                           |                |                            |        |        |                        |       |              |
|     |              |     |                                                                                                                                                                           |                |                            |        |        |                        |       |              |

LOGGED: TM **CASING:** Uncased RIG: Comacchio 205 DRILLER: DB

**TYPE OF BORING:** Solid flight auger to 2.5m

WATER OBSERVATIONS: No free groundwater observed

**REMARKS:** 

| SAMPLING & IN SITU | TESTING | LEGI | END  |
|--------------------|---------|------|------|
| G Gas sample       |         | PID  | Phot |

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturb Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level Core drilling
Disturbed sample
Environmental sample



CLIENT: School Infrastructure NSW

Proposed Multi-Purpose Medium Hall PROJECT: 38-54 and 66 Eton Street, Sutherland LOCATION:

**NORTHING:** 6232450.5

**DIP/AZIMUTH:** 90°/--

**EASTING:** 320845.5

**SURFACE LEVEL:** 111.5 AHD

**BORE No: BH07 PROJECT No: 224456.00** 

**DATE:** 28/9/2023 SHEET 1 OF 1

|      | D                     | -41-      | Description                                                                                                                                                                | jc T           |      | Sampling & In Situ Testing |        | <u>_</u>              | Well  |              |
|------|-----------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|----------------------------|--------|-----------------------|-------|--------------|
| 귐    | De <sub>l</sub><br>(n | ptn<br>n) | of                                                                                                                                                                         | Graphic<br>Log | Туре | Depth                      | Sample | Results &<br>Comments | Water | Construction |
| Н    |                       |           | Strata  FILL/ SAND: fine to medium, brown, trace silt and rootlets,                                                                                                        |                | E    | <br>                       | Sa     | Comments              |       | Details      |
|      |                       | 0.15      | moist                                                                                                                                                                      | $\bigotimes$   | -    | 0.1                        |        |                       |       | -            |
|      |                       |           | FILL/ CLAY: medium plasticity, brown, trace fine igneous gravel, w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>                        |                |      |                            |        |                       |       |              |
| -  - | -                     |           | g,                                                                                                                                                                         |                | E*   | 0.4                        |        |                       |       | -            |
| -=   |                       |           |                                                                                                                                                                            |                | -    | 0.5                        |        |                       |       |              |
|      |                       | 0.7       | OLAYOLOU                                                                                                                                                                   | $\otimes$      |      |                            |        |                       |       |              |
|      | -                     |           | CLAY CI-CH: medium to high plasticity, red-brown and pale grey, w <pl, residual<="" stiff,="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></pl,> |                |      |                            |        |                       |       | -            |
|      | - 1                   |           |                                                                                                                                                                            |                | Е    | 0.9                        |        |                       |       | -1           |
| -    |                       |           |                                                                                                                                                                            |                | ]    | 1.0                        |        |                       |       | -            |
|      | -                     |           |                                                                                                                                                                            |                | U    |                            |        |                       |       | -            |
|      |                       |           |                                                                                                                                                                            |                |      | 1.4                        |        |                       |       |              |
| -19- |                       |           | Below 1.4m: very stiff                                                                                                                                                     |                |      |                            |        |                       |       | -            |
|      |                       |           |                                                                                                                                                                            |                |      |                            |        |                       |       |              |
| -    |                       |           |                                                                                                                                                                            |                |      |                            |        |                       |       | -            |
| +    |                       |           |                                                                                                                                                                            |                |      |                            |        |                       |       |              |
|      | -2<br>-               |           |                                                                                                                                                                            |                |      |                            |        |                       |       | -2           |
|      |                       |           |                                                                                                                                                                            |                | ]    |                            |        |                       |       | -            |
|      |                       | 2.3       | SHALE: dark grey and orange-brown, very low strength, highly weathered, Hawkesbury Sandstone                                                                               | ===            |      |                            |        |                       |       |              |
| 109  |                       |           | nignly weathered, Hawkesbury Sandstone                                                                                                                                     |                |      | 2.5                        |        |                       |       | -            |
| +    |                       |           |                                                                                                                                                                            |                | S    |                            |        | 11,30<br>refusal      |       | -            |
|      |                       | 2.8       | Below 2.7m: low strength                                                                                                                                                   | ===            |      | 2.8-                       |        | reiddai               |       |              |
| -    |                       |           | Bore discontinued at 2.8m<br>Refusal                                                                                                                                       |                |      |                            |        |                       |       | -            |
|      | -3<br>-               |           |                                                                                                                                                                            |                |      |                            |        |                       |       | -3           |
| -    |                       |           |                                                                                                                                                                            |                |      |                            |        |                       |       | -            |
|      |                       |           |                                                                                                                                                                            |                |      |                            |        |                       |       | -            |
| -8   |                       |           |                                                                                                                                                                            |                |      |                            |        |                       |       |              |
| -    | -                     |           |                                                                                                                                                                            |                |      |                            |        |                       |       | -            |
| +    |                       |           |                                                                                                                                                                            |                |      |                            |        |                       |       | -            |
|      |                       |           |                                                                                                                                                                            |                |      |                            |        |                       |       |              |
| -    | -4                    |           |                                                                                                                                                                            |                |      |                            |        |                       |       | -4           |
|      |                       |           |                                                                                                                                                                            |                |      |                            |        |                       |       |              |
|      |                       |           |                                                                                                                                                                            |                |      |                            |        |                       |       |              |
|      | -                     |           |                                                                                                                                                                            |                |      |                            |        |                       |       |              |
| 12   |                       |           |                                                                                                                                                                            |                |      |                            |        |                       |       |              |
| -    |                       |           |                                                                                                                                                                            |                |      |                            |        |                       |       | -            |
|      | -                     |           |                                                                                                                                                                            |                |      |                            |        |                       |       |              |
|      |                       |           |                                                                                                                                                                            |                |      |                            |        |                       |       |              |

LOGGED: TM **CASING:** Uncased RIG: Explora DRILLER: DB

**TYPE OF BORING:** Solid flight auger to 2.5m

WATER OBSERVATIONS: No free groundwater observed **REMARKS:** \*BD03/20230928TM Taken from 0.4-0.5m

|--|

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level



**CLIENT:** School Infrastructure NSW

PROJECT: Proposed Multi-Purpose Medium Hall

**LOCATION:** 38-54 and 66 Eton Street, Sutherland

**SURFACE LEVEL:** 109.7 AHD

**EASTING:** 320824.1 **PROJECT No:** 224456.00 **NORTHING:** 6232431.0 **PATE:** 27/0/2023

**BORE No: BH08** 

**NORTHING:** 6232431.9 **DATE:** 27/9/2023 **DIP/AZIMUTH:** 90°/-- **SHEET** 1 OF 1

| П   |     |       | Description                                                                                                                                                                                    | O              |        | Sampling & In Situ Testing |        |                       |       | Well         |
|-----|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|----------------------------|--------|-----------------------|-------|--------------|
| 씸   | Dep | th    | Description<br>of                                                                                                                                                                              | Graphic<br>Log | Φ      |                            |        |                       | Water | Construction |
| -   | (m) | )     | Strata                                                                                                                                                                                         | Gra            | Type   | Depth                      | Sample | Results &<br>Comments | >     | Details      |
|     |     |       | FILL/ Gravelly SAND: fine to medium, grey to dark grey, fine to medium angular to sub-angular igneous gravel, dry                                                                              |                | E      | 0.0                        | S      |                       |       | -            |
|     |     | 0.4   | CLAY CI-CH: medium to high plasticity, red-brown and pale grey, w <pl, residual<="" stiff,="" th=""><th></th><th>E</th><th>0.4<br/>0.5<br/>0.6</th><th></th><th></th><th></th><th>-</th></pl,> |                | E      | 0.4<br>0.5<br>0.6          |        |                       |       | -            |
| - 1 | - 1 |       |                                                                                                                                                                                                |                | U<br>E | 0.9                        |        |                       |       | -1           |
|     |     |       | Below 1.0m: very stiff to hard                                                                                                                                                                 |                | S      | 1.0                        |        | 10,12,19<br>N = 31    |       | -            |
| 108 |     |       |                                                                                                                                                                                                |                |        | 1.45                       |        |                       |       | -            |
|     | -2  |       |                                                                                                                                                                                                |                |        |                            |        |                       |       | -2<br>-      |
|     |     | 2.5 - | SHALE: dark grey and orange-brown, low strength, highly weathered, Hawkesbury Sandstone                                                                                                        |                | S      | 2.5<br>2.6                 |        | 20/100<br>refusal     |       |              |
| 107 | -3  |       | Bore discontinued at 2.6m<br>Refusal                                                                                                                                                           |                |        |                            |        |                       |       | -3           |
|     |     |       |                                                                                                                                                                                                |                |        |                            |        |                       |       | -            |
| 106 |     |       |                                                                                                                                                                                                |                |        |                            |        |                       |       | -            |
|     | -4  |       |                                                                                                                                                                                                |                |        |                            |        |                       |       | -4<br>-4     |
|     |     |       |                                                                                                                                                                                                |                |        |                            |        |                       |       |              |
| 105 |     |       |                                                                                                                                                                                                |                |        |                            |        |                       |       |              |

RIG: Comacchio 205 DRILLER: DB LOGGED: TM CASING: Uncased

**TYPE OF BORING:** Solid flight auger to 2.5m

WATER OBSERVATIONS: No free groundwater observed

**REMARKS:** 

|  | SAMPLING | & IN | SITU | <b>TESTING</b> | LEGEND |
|--|----------|------|------|----------------|--------|
|--|----------|------|------|----------------|--------|

A Auger sample
B Bulk sample
B Bulk Slock sample
C Core drilling
D D bisturbed sample
E Environmental sample
W Water sample
W Water sample
W Water level



**SURFACE LEVEL:** 109.5 AHD

**EASTING:** 320838.9

School Infrastructure NSW CLIENT:

**PROJECT:** Proposed Multi-Purpose Medium Hall LOCATION:

**NORTHING:** 6232418.2 38-54 and 66 Eton Street, Sutherland **DIP/AZIMUTH:** 90°/--

**BORE No: BH09** 

**PROJECT No: 224456.00** 

**DATE:** 27/9/2023 SHEET 1 OF 1

|     |              |                                                                                                                                                                                                                                                                        |                |      | / <b>/</b> / | OHLLI I OH I |                       |       |                         |
|-----|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|--------------|--------------|-----------------------|-------|-------------------------|
|     | Donth        | Description                                                                                                                                                                                                                                                            | hic ~          |      |              |              | & In Situ Testing     | _ ja  | Well                    |
| RL  | Depth<br>(m) | of<br>Strata                                                                                                                                                                                                                                                           | Graphic<br>Log | Type | Depth        | Sample       | Results &<br>Comments | Water | Construction<br>Details |
|     |              | FILL/ Sandy SILT: low plasticity, dark grey-brown, fine to medium sand, w <pl< td=""><td></td><td>E</td><td>0.0<br/>0.1</td><td>U,</td><td></td><td></td><td>-</td></pl<>                                                                                              |                | E    | 0.0<br>0.1   | U,           |                       |       | -                       |
| 109 | 0.4          | FILL/ CLAY: medium plasticity, red-brown and brown, trace fine igneous and ironstone gravel, w <pl, a="" condition,="" firm="" generally="" in="" natural<="" possibly="" reworked="" td=""><td></td><td>E</td><td>0.4</td><td></td><td></td><td></td><td>-</td></pl,> |                | E    | 0.4          |              |                       |       | -                       |
|     | -1           |                                                                                                                                                                                                                                                                        |                | E    | 0.9          |              |                       |       | -<br>-<br>-1            |
|     |              |                                                                                                                                                                                                                                                                        |                | S    | 1.45         |              | 1,3,2<br>N = 5        |       | -                       |
| 108 |              |                                                                                                                                                                                                                                                                        |                |      |              |              |                       |       |                         |
|     | 1.9<br>-2    | CLAY CI-CH: medium to high plasticity, red-brown and pale grey, w <pl, hard,="" residual<="" stiff="" td="" to="" very=""><td></td><td>E</td><td>1.9<br/>2.0</td><td></td><td></td><td></td><td>-2<br/>-</td></pl,>                                                    |                | E    | 1.9<br>2.0   |              |                       |       | -2<br>-                 |
| 107 |              |                                                                                                                                                                                                                                                                        |                |      | 2.5          |              |                       |       | -                       |
|     |              |                                                                                                                                                                                                                                                                        |                | S    | 2.95         |              | 10,12,17<br>N = 29    |       |                         |
|     | -3           |                                                                                                                                                                                                                                                                        |                |      | 2.90         |              |                       |       | -3                      |
| 106 |              |                                                                                                                                                                                                                                                                        |                |      |              |              |                       |       |                         |
|     | 3.8 -        | SHALE: dark grey and orange-brown, low strength, highly weathered, Hawkesbury Sandstone  Bore discontinued at 4.0m                                                                                                                                                     |                |      |              |              |                       |       | 4                       |
|     |              | Refusal                                                                                                                                                                                                                                                                |                |      |              |              |                       |       |                         |
| 105 |              |                                                                                                                                                                                                                                                                        |                |      |              |              |                       |       | -                       |
|     |              |                                                                                                                                                                                                                                                                        |                |      |              |              |                       |       |                         |

DRILLER: DB LOGGED: TM **CASING:** Uncased RIG: Comacchio 205

**TYPE OF BORING:** Solid flight auger to 4.0m

WATER OBSERVATIONS: No free groundwater observed

**REMARKS:** 

|          | SAMPLING | 3 & IN SITU | <b>TESTING</b> | LEGE | ND           |
|----------|----------|-------------|----------------|------|--------------|
| r sample | G        | Gas sample  |                | PID  | Photo ionisa |
|          |          |             |                |      |              |

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level



CLIENT: School Infrastructure NSW

Proposed Multi-Purpose Medium Hall PROJECT: LOCATION:

38-54 and 66 Eton Street, Sutherland

**SURFACE LEVEL:** 103.9 AHD

**PROJECT No: 224456.00 EASTING:** 320793.3

**BORE No:** BH10

**NORTHING:** 6232318.8 **DATE:** 28/9/2023 **DIP/AZIMUTH:** 90°/--SHEET 1 OF 1

|      | _         |           | Description                                                                                                                                                                                          | .je            |      | Sam         |        | & In Situ Testing     | _     | Well         |
|------|-----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|-------------|--------|-----------------------|-------|--------------|
| R    | Dep<br>(m | oth<br>n) | of                                                                                                                                                                                                   | Graphic<br>Log | Туре | Depth       | Sample | Results &<br>Comments | Water | Construction |
| L    |           |           | Strata                                                                                                                                                                                               |                |      | _ŏ<br>_0.0_ | Sa     | Comments              |       | Details      |
| ŀ    | -         |           | FILL/ CLAY: low plasticity, brown, trace silt, ironstone gravel and rootlets, w <pl< td=""><td></td><td>E</td><td>0.1</td><td></td><td></td><td></td><td>-</td></pl<>                                |                | E    | 0.1         |        |                       |       | -            |
| ŀ    | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       | -            |
| İ    | -         |           |                                                                                                                                                                                                      | $\bowtie$      |      | 0.4         |        |                       |       |              |
| -    | -         |           |                                                                                                                                                                                                      |                | Е    | 0.5         |        |                       |       | -            |
| ŀ    | -         |           |                                                                                                                                                                                                      |                | U    |             |        |                       |       | -            |
| ł    | -         |           |                                                                                                                                                                                                      |                | 0    |             |        |                       |       | -            |
| 103  | -         | 0.8       | CLAY CI-CH: medium to high plasticity, red-brown and pale grey, w <pl, residual<="" stiff="" stiff,="" td="" to="" very=""><td>1</td><td></td><td>0.8</td><td></td><td></td><td></td><td></td></pl,> | 1              |      | 0.8         |        |                       |       |              |
| -    | - 1       |           | pale grey, w <pl, residual<="" stiπ="" stiπ,="" td="" to="" very=""><td></td><td>Е</td><td>1.0</td><td></td><td></td><td></td><td>-1</td></pl,>                                                      |                | Е    | 1.0         |        |                       |       | -1           |
| ŀ    | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       | -            |
| ł    | -         |           |                                                                                                                                                                                                      | <b>Y</b> //    | S    |             |        | 4,5,9<br>N = 14       |       | -            |
| İ    | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       |              |
| -    | -         |           |                                                                                                                                                                                                      | <b>Y</b> //    |      | 1.45        |        |                       |       | -            |
| ŀ    | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       | -            |
| ŀ    | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       | -            |
| 102  | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       |              |
|      | -2        |           |                                                                                                                                                                                                      |                |      |             |        |                       |       | -2           |
| ŀ    | -         | 2.1       | SHALE: dark grey and grange-brown, very low strength                                                                                                                                                 | <u> </u>       |      |             |        |                       |       | -            |
| ŀ    | -         |           | SHALE: dark grey and orange-brown, very low strength with low strength iron indurated bands, highly weathered, Hawkesbury Sandstone                                                                  |                |      |             |        |                       |       |              |
|      | -<br>- 2  | 2.35      | Below 2.3m: low to medium strength                                                                                                                                                                   |                |      |             |        |                       |       | -            |
| ŀ    | -         |           | Bore discontinued at 2.35m                                                                                                                                                                           |                |      |             |        |                       |       | -            |
| ŀ    | -         |           | Refusal                                                                                                                                                                                              |                |      |             |        |                       |       | -            |
| t    | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       | -            |
| 101  | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       |              |
| -    | -3        |           |                                                                                                                                                                                                      |                |      |             |        |                       |       | -3           |
| ŀ    | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       | -            |
| t    | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       | -            |
|      | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       |              |
| -    | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       | -            |
| ŀ    | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       | -            |
| ŀ    | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       |              |
| 100  | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       |              |
| -    | -4        |           |                                                                                                                                                                                                      |                |      |             |        |                       |       | -4           |
| +    | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       | -            |
| ŀ    | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       |              |
| -    | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       |              |
| -    | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       |              |
| -    | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       | -            |
| +    | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       |              |
| - 66 | -         |           |                                                                                                                                                                                                      |                |      |             |        |                       |       |              |
| 6    |           |           |                                                                                                                                                                                                      |                |      |             |        |                       |       |              |

DRILLER: DB LOGGED: TM **CASING:** Uncased RIG: Explora

**TYPE OF BORING:** Solid flight auger to 2.35m

WATER OBSERVATIONS: No free groundwater observed

**REMARKS:** 

| SAMPLING | & IN | SITU | <b>TESTING</b> | LEGEND |
|----------|------|------|----------------|--------|
|          |      |      |                |        |

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturb Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level Core drilling
Disturbed sample
Environmental sample



**CLIENT:** School Infrastructure NSW

PROJECT: Proposed Multi-Purpose Medium Hall

LOCATION: 38-54 and 66 Eton Street, Sutherland

**SURFACE LEVEL:** 103.6 AHD

**EASTING:** 320821.7 **PR** 

NORTHING: 6232315 DIP/AZIMUTH: 90°/-- **BORE No:** BH11

**PROJECT No: 224456.00** 

**DATE**: 28/9/2023 **SHEET** 1 OF 1

| _       |              |       |                                                                                                                                                                                  | _              |      |       | <b>VIO I I</b> | OHEET 1 OF 1          |          |              |
|---------|--------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|-------|----------------|-----------------------|----------|--------------|
|         | <b>.</b>     |       | Description                                                                                                                                                                      | .얼 _           |      | San   |                | & In Situ Testing     | <u>_</u> | Well         |
| R       | Depth<br>(m) | h     | of                                                                                                                                                                               | Graphic<br>Log | e S  | oth   | Sample         | Results &             | Water    | Construction |
|         | (111)        |       | Strata                                                                                                                                                                           | ַס             | Туре | Depth | Sam            | Results &<br>Comments | >        | Details      |
|         |              |       | FILL/ CLAY: low plasticity, brown, trace silt, ironstone gravel and rootlets, w <pl< td=""><td></td><td>Е</td><td>0.0</td><td>0,</td><td></td><td></td><td></td></pl<>           |                | Е    | 0.0   | 0,             |                       |          |              |
|         | -            |       | gravel and rootlets, w <pl< td=""><td><math>\times</math></td><td></td><td>0.1</td><td></td><td></td><td></td><td></td></pl<>                                                    | $\times$       |      | 0.1   |                |                       |          |              |
|         | - 0          | ).2 - | CLAY CI-CH: medium to high plasticity, yellow-brown and red-brown, w <pl, residual<="" stiff,="" td=""><td>ŽŽ,</td><td>1</td><td></td><td></td><td></td><td></td><td></td></pl,> | ŽŽ,            | 1    |       |                |                       |          |              |
|         |              |       | red-brown, w <pl, residual<="" stiff,="" td=""><td></td><td></td><td>0.4</td><td></td><td></td><td></td><td></td></pl,>                                                          |                |      | 0.4   |                |                       |          |              |
|         | _            |       |                                                                                                                                                                                  | 1//            | E    | 0.5   |                |                       |          |              |
| 103     | _            |       |                                                                                                                                                                                  |                | ]    | 0.0   |                |                       |          | _            |
| [       | -            |       |                                                                                                                                                                                  |                |      |       |                |                       |          | -            |
| -       | _            |       |                                                                                                                                                                                  | Y//            |      |       |                |                       |          | -            |
| -       | -            |       |                                                                                                                                                                                  |                | E    | 0.9   |                |                       |          | -            |
| ++      | -1           |       | Below 1.0m: very stiff                                                                                                                                                           |                | -    | 1.0   |                |                       |          | -1           |
|         | -            |       | Bolow 1.011. Vory dail                                                                                                                                                           |                |      |       |                |                       |          | -            |
|         | -            |       |                                                                                                                                                                                  | Y//            | s    |       |                | 6,10,12<br>N = 22     |          | -            |
|         | -            |       |                                                                                                                                                                                  |                | 1    |       |                |                       |          |              |
| 11      |              |       |                                                                                                                                                                                  |                |      | 1.45  |                |                       |          |              |
| 102     |              |       |                                                                                                                                                                                  |                |      |       |                |                       |          |              |
| [=      |              |       |                                                                                                                                                                                  |                |      |       |                |                       |          |              |
|         |              |       |                                                                                                                                                                                  |                | ]    |       |                |                       |          |              |
|         | -            |       |                                                                                                                                                                                  |                |      |       |                |                       |          | -            |
|         | -2           |       |                                                                                                                                                                                  |                | 1    |       |                |                       |          | -2           |
| -       | -            |       |                                                                                                                                                                                  |                |      |       |                |                       |          | -            |
| - } }   | -            |       |                                                                                                                                                                                  |                | ]    |       |                |                       |          | -            |
| + +     | - 2          | 2.3   | SHALE: dark grey and orange-brown, very low strength                                                                                                                             |                |      |       |                |                       |          | -            |
|         | -            |       | SHALE: dark grey and orange-brown, very low strength with low strength iron indurated bands, highly weathered, Hawkesbury Sandstone                                              |                |      |       |                |                       |          | -            |
| -       | -            |       | Hawkesbury Sandstone                                                                                                                                                             | <u> </u>       |      | 2.5   |                |                       |          | -            |
| 101     | -            |       |                                                                                                                                                                                  |                | s    |       |                | 14,15/80<br>refusal   |          |              |
|         |              |       |                                                                                                                                                                                  |                |      | 2.77  |                |                       |          |              |
|         |              |       |                                                                                                                                                                                  | ===            |      |       |                |                       |          |              |
|         | -<br>-3      |       | Below 2.9m: low strength                                                                                                                                                         |                |      | 3.0   |                |                       |          | -3           |
|         |              | 3.1   |                                                                                                                                                                                  |                | Α    | -3.1- |                |                       |          | ŭ            |
|         | _            |       | Bore discontinued at 3.1m                                                                                                                                                        |                |      | 0     |                |                       |          | _            |
|         | -            |       | Refusal                                                                                                                                                                          |                |      |       |                |                       |          | -            |
| -  -  - | -            |       |                                                                                                                                                                                  |                |      |       |                |                       |          | -            |
| -  -  - | -            |       |                                                                                                                                                                                  |                |      |       |                |                       |          | -            |
| -01     |              |       |                                                                                                                                                                                  |                |      |       |                |                       |          | -            |
| + +     | -            |       |                                                                                                                                                                                  |                |      |       |                |                       |          | -            |
|         | -            |       |                                                                                                                                                                                  |                |      |       |                |                       |          | -            |
|         | -            |       |                                                                                                                                                                                  |                |      |       |                |                       |          | -            |
|         | -4           |       |                                                                                                                                                                                  |                |      |       |                |                       |          | -4           |
|         |              |       |                                                                                                                                                                                  |                |      |       |                |                       |          |              |
|         |              |       |                                                                                                                                                                                  |                |      |       |                |                       |          |              |
|         | [            |       |                                                                                                                                                                                  |                |      |       |                |                       |          |              |
|         | _            |       |                                                                                                                                                                                  |                |      |       |                |                       |          |              |
| -66     | -            |       |                                                                                                                                                                                  |                |      |       |                |                       |          |              |
| [       | _            |       |                                                                                                                                                                                  |                |      |       |                |                       |          |              |
|         | _            |       |                                                                                                                                                                                  |                |      |       |                |                       |          |              |
| } }     | _            |       |                                                                                                                                                                                  |                |      |       |                |                       |          | -            |
| Ш       |              |       |                                                                                                                                                                                  |                |      |       |                |                       |          |              |

RIG: Explora DRILLER: DB LOGGED: TM CASING: Uncased

**TYPE OF BORING:** Solid flight auger to 3.1m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

| SAMPLING | & IN SITU | <b>TESTING</b> | LEGEND |
|----------|-----------|----------------|--------|
|          |           |                |        |

A Auger sample
B Bulk sample
B Bulk Slock sample
C Core drilling
D D bisturbed sample
E Environmental sample
W Water sample
W Water sample
W Water level



CLIENT: School Infrastructure NSW

Proposed Multi-Purpose Medium Hall PROJECT: LOCATION:

38-54 and 66 Eton Street, Sutherland

**SURFACE LEVEL:** 102.7 AHD

**PROJECT No: 224456.00 EASTING:** 320786.2 **NORTHING**: 6232288

**DATE:** 28/9/2023 **DIP/AZIMUTH:** 90°/--SHEET 1 OF 1

**BORE No:** BH12

|      |           |           | Description                                                                                                                                                            | . <u>S</u>     |      | Sam   |        | & In Situ Testing     | L.    | Well         |
|------|-----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|-------|--------|-----------------------|-------|--------------|
| R    | Dep<br>(m | pth<br>n) | of                                                                                                                                                                     | Graphic<br>Log | Туре | Depth | Sample | Results &<br>Comments | Water | Construction |
|      |           | _         | Strata                                                                                                                                                                 |                | E E  | 0.0   | Sal    | Comments              |       | Details      |
| +    |           |           | FILL/ CLAY: low plasticity, brown, trace silt, ironstone gravel and rootlets, w <pl< td=""><td></td><td>-</td><td>0.1</td><td></td><td></td><td></td><td></td></pl<>   |                | -    | 0.1   |        |                       |       |              |
|      |           |           |                                                                                                                                                                        |                |      |       |        |                       |       |              |
| +    | . '       | 0.35      | CLAY CI-CH: medium to high plasticity, yellow-brown, w <pl, residual<="" stiff,="" td=""><td>1//</td><td>E</td><td>0.4</td><td></td><td></td><td></td><td>-</td></pl,> | 1//            | E    | 0.4   |        |                       |       | -            |
|      |           |           | WNFL, Still, residual                                                                                                                                                  |                |      | 0.5   |        |                       |       |              |
| 102  |           |           |                                                                                                                                                                        |                |      |       |        |                       |       | -            |
|      |           |           |                                                                                                                                                                        |                |      | 0.9   |        |                       |       |              |
|      | - 1       |           | Delay 4 Oran yang shiff                                                                                                                                                |                | E    | 1.0   |        |                       |       | -1           |
| +    |           |           | Below 1.0m: very stiff                                                                                                                                                 |                |      |       |        | 2746                  |       | -            |
|      |           |           |                                                                                                                                                                        |                | S    |       |        | 2,7,16<br>N = 23      |       |              |
| -    |           |           |                                                                                                                                                                        |                |      | 1.45  |        |                       |       | -            |
|      |           | 1.5       | SHALE: dark grey with pale grey fine grained sandstone<br>bands, very low strength with low strength iron indurated<br>bands, highly weathered, Hawkesbury Sandstone   |                |      |       |        |                       |       | -            |
| -101 |           |           | bands, highly weathered, Hawkesbury Sandstone                                                                                                                          |                |      |       |        |                       |       | -            |
|      |           |           |                                                                                                                                                                        |                |      | 1.9   |        |                       |       |              |
| -    | -2        |           | Below 1.9m: low strength                                                                                                                                               |                | А    | 1.5   |        |                       |       | -2           |
| + }  |           | 2.1       | Bore discontinued at 2.1m                                                                                                                                              | <u> </u>       |      | -2.1- |        |                       |       |              |
|      |           |           | Refusal                                                                                                                                                                |                |      |       |        |                       |       |              |
| -    |           |           |                                                                                                                                                                        |                |      |       |        |                       |       | -            |
|      |           |           |                                                                                                                                                                        |                |      |       |        |                       |       |              |
| 100  |           |           |                                                                                                                                                                        |                |      |       |        |                       |       | -            |
|      |           |           |                                                                                                                                                                        |                |      |       |        |                       |       | -            |
| -    | -3        |           |                                                                                                                                                                        |                |      |       |        |                       |       | -3           |
|      |           |           |                                                                                                                                                                        |                |      |       |        |                       |       |              |
| -    |           |           |                                                                                                                                                                        |                |      |       |        |                       |       | -            |
| +    |           |           |                                                                                                                                                                        |                |      |       |        |                       |       | -            |
|      |           |           |                                                                                                                                                                        |                |      |       |        |                       |       |              |
| -66  |           |           |                                                                                                                                                                        |                |      |       |        |                       |       | -            |
|      |           |           |                                                                                                                                                                        |                |      |       |        |                       |       | -            |
| -    | -4        |           |                                                                                                                                                                        |                |      |       |        |                       |       | -4           |
|      |           |           |                                                                                                                                                                        |                |      |       |        |                       |       |              |
| -    |           |           |                                                                                                                                                                        |                |      |       |        |                       |       |              |
| +    |           |           |                                                                                                                                                                        |                |      |       |        |                       |       |              |
|      |           |           |                                                                                                                                                                        |                |      |       |        |                       |       |              |
| -86  |           |           |                                                                                                                                                                        |                |      |       |        |                       |       | -            |
|      |           |           |                                                                                                                                                                        |                |      |       |        |                       |       |              |
|      |           |           |                                                                                                                                                                        |                |      |       |        |                       |       |              |

LOGGED: TM **CASING:** Uncased RIG: Explora DRILLER: DB

**TYPE OF BORING:** Solid flight auger to 2.1m

WATER OBSERVATIONS: No free groundwater observed

**REMARKS:** 

| SAMPLING & | IN SITU | TESTING LEGEND |
|------------|---------|----------------|
|            |         |                |

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level



**CLIENT:** School Infrastructure NSW

**PROJECT:** Proposed Multi-Purpose Medium Hall

**LOCATION:** 38-54 and 66 Eton Street, Sutherland, NSW 2232

SURFACE LEVEL: 112.2 AHD

**COORDINATE:** E:320810.7, N:6232518.3 **PROJECT No:** 224456.01

**DATUM/GRID:** MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

**LOCATION ID:** BH101 **PROJECT No:** 224456.0

**DATE:** 16/07/24 **SHEET:** 1 of 1

|        |                              | CONDITIONS ENCOUNTERED                                                                                                                  | D       |           |            |                                                                                                                                         | SAN     | <b>IPLE</b> |          |                                              |           | TESTING AND REMARKS       |
|--------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|----------|----------------------------------------------|-----------|---------------------------|
| RL (m) | DEPTH (m)                    | DESCRIPTION<br>OF<br>STRATA                                                                                                             | GRAPHIC | ORIGIN(#) | CONSIS.(*) | MOISTURE                                                                                                                                | REMARKS | TYPE        | INTERVAL | DEРТН (m)                                    | TEST TYPE | RESULTS<br>AND<br>REMARKS |
| +      | 0.10                         | ASPHALTIC CONCRETE: 100 mm                                                                                                              | X¢X     |           | NA         | NA                                                                                                                                      |         |             | _        | - 0.10 -                                     |           |                           |
| 211    | -<br>-<br>-<br>-             | FILL / Sandy SILT: brown; low plasticity; fine to medium sand.                                                                          |         | FILL      | ND         | w>PL                                                                                                                                    |         | A/ES        |          | - 0.20 0.40 0.50                             |           |                           |
| -E     | 1.00                         | Silty CLAY (CH), with gravel: pale grey mottled red-brown; high plasticity; fine to medium, angular to sub-angular, ironstone gravel.   |         | RS        | VSt        | w <pl< td=""><td></td><td>SPT</td><td></td><td>- 1.00 - · · · · · · · · · · · · · · · · · ·</td><td>SPT</td><td>8,10,15 N=25</td></pl<> |         | SPT         |          | - 1.00 - · · · · · · · · · · · · · · · · · · | SPT       | 8,10,15 N=25              |
| 011    | 2 -                          | SILTSTONE: dark grey; inferred very low to low                                                                                          |         |           | NA         | NA                                                                                                                                      |         | ES -        |          | - 2.00                                       | SPT       | 16,25/50 (HB)             |
|        | 3 <b>-</b>                   | strength with extremely weathered and ironstone bands. Hawkesbury Sandstone Borehole discontinued at 2.70m depth. Target depth reached. |         |           |            |                                                                                                                                         |         |             |          | L 2.70 -                                     |           |                           |
|        | 4 _<br>-<br>-<br>-<br>-<br>- |                                                                                                                                         |         |           |            |                                                                                                                                         |         |             |          |                                              |           |                           |

 PLANT: Bobcat
 OPERATOR: Ground Test (C.S.)
 LOGGED: CSY

 METHOD: AD/T to 2.7 m
 CASING: Uncased



**CLIENT:** School Infrastructure NSW

**PROJECT:** Proposed Multi-Purpose Medium Hall

**LOCATION:** 38-54 and 66 Eton Street, Sutherland, NSW 2232

SURFACE LEVEL: 112.2 AHD

**COORDINATE:** E:320798.3, N:6232511.5 **PROJECT No:** 224456.01

**DATUM/GRID:** MGA2020 Zone 56

DIP/AZIMUTH: 90°/---°

LOCATION ID: BH102
PROJECT No: 224456.0

**DATE:** 16/07/24 **SHEET:** 1 of 1

| . 1 |       |           | CONDITIONS ENCOUNTERED                                                                                                                          |         |           | · •                     |                                                                                                   | SAN     | /PLE |          |                                              |           | TESTING AND REMARKS       |
|-----|-------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-------------------------|---------------------------------------------------------------------------------------------------|---------|------|----------|----------------------------------------------|-----------|---------------------------|
| (m) | (iii) | DЕРТН (m) | DESCRIPTION<br>OF<br>STRATA                                                                                                                     | GRAPHIC | ORIGIN(#) | CONSIS.(*)  DENSITY.(*) | MOISTURE                                                                                          | REMARKS | TYPE | INTERVAL | DEРТН (m)                                    | TEST TYPE | RESULTS<br>AND<br>REMARKS |
| Ť   |       | 0.10      | ASPHALTIC CONCRETE: 100 mm                                                                                                                      | X¢X     |           | NA                      | NA                                                                                                |         |      |          | - 0.10 -                                     |           |                           |
| -21 | 1     | -         | FILL / Sandy SILT, trace gravel: brown and grey; low plasticity; fine to medium sand; fine to medium, ironstone gravel; trace rootlets and ash. |         | FILL      | ND                      | w>PL                                                                                              |         | A/ES |          | - 0.10 -<br>- 0.20 -<br>- 0.40 -<br>- 0.50 - |           |                           |
| -   |       | 0.70      | Silty CLAY (CI), trace gravel: red-brown mottled brown; medium plasticity; fine, ironstone gravel; trace roots.                                 |         |           | St<br>-<br>VSt          | w>PL                                                                                              |         | ES   |          | - 0.80 -<br>-<br>- 1.00 -                    | SPT       | ₹,5,9 N=14                |
|     |       | -         | 1.30m: becoming pale grey                                                                                                                       |         | RS        |                         |                                                                                                   |         |      |          | - 1.45 -<br><br>                             | PP<br>PP  | 400kPa<br>600kPa          |
| -01 | 2     | 2 -       |                                                                                                                                                 |         |           | VSt                     | w=PL<br>to<br>w <pl< td=""><td></td><td>ES</td><td></td><td>- 2.00 -</td><td></td><td></td></pl<> |         | ES   |          | - 2.00 -                                     |           |                           |
| -   | 2     | 2.50      | SILTSTONE: dark grey; inferred very low to low<br>strength with extremely weathered and<br>ironstone bands. Hawkesbury Sandstone                |         |           | NA                      | NA                                                                                                |         | SPT  |          | - 2.50 -<br>-<br>-<br>- 2.90 -               | SPT       | 9,15,25/100 (HB)          |
| -   |       |           | Borehole discontinued at 2.90m depth. Target depth reached.                                                                                     |         |           |                         |                                                                                                   |         |      |          |                                              |           |                           |
| 108 |       | 4 _       |                                                                                                                                                 |         |           |                         |                                                                                                   |         |      |          |                                              |           |                           |
|     |       |           | gin is "probable" unless otherwise stated. <sup>(n</sup> Consistency/Relative densit                                                            |         |           |                         |                                                                                                   |         |      |          |                                              |           |                           |

PLANT: BobcatOPERATOR: Ground Test (C.S.)LOGGED: CSYMETHOD: AD/T to 2.9 mCASING: Uncased



CLIENT: School Infrastructure NSW

**PROJECT:** Proposed Multi-Purpose Medium Hall

LOCATION: 38-54 and 66 Eton Street, Sutherland, NSW 2232

SURFACE LEVEL: 111.9 AHD

**COORDINATE:** E:320792.9, N:6232501.6 **PROJECT No:** 224456.01

DATUM/GRID: MGA2020 Zone 56

**DATE:** 16/07/24 DIP/AZIMUTH: 90°/---°

SHEET: 1 of 1

**LOCATION ID: BH103** 

**CONDITIONS ENCOUNTERED** SAMPLE **TESTING AND REMARKS** DENSITY.(\* GROUNDWATER CONSIS.(\*) TYPE Ξ MOISTURE **DEPTH (m) RESULTS** REMARKS INTERVAL GRAPHIC ORIGIN(#) AND DEPTH ( **DESCRIPTION** TYPE TEST **REMARKS** RL (m) OF **STRATA** ES FILL / Sandy SILT, trace gravel: dark brown; low 0.10 plasticity; fine to medium sand; fine, sandstone gravel; with wood fragment and rootlets. w>PI EIK ND 0.40 FS 0.50 0.70 FILL / Silty CLAY, trace gravel: red-brown 0.80 mottled brown; medium to high plasticity; fine, ironstone gravel; trace rootlets. FILL ES ND w>PL 1.00 1.20 SPT 4,6,6 N=12 Silty CLAY (CH), trace gravel: pale grey mottled -540-580kPa red-brown; high plasticity; fine, ironstone gravel; trace rootlets. PP w=PL VSt 2.40 2.50 w<PL SPT SPT 12,19,24 N=43 8 2.95 3.00 SILTSTONE: dark grey; inferred very low strength with extremely weathered and ironstone bands. Hawkesbury Sandstone NA NA Borehole discontinued at 4.00m depth. Target depth reached. Generated with CORE-GS by Geroc - Soil 🖷 Soil origin is "probable" unless otherwise stated. "Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

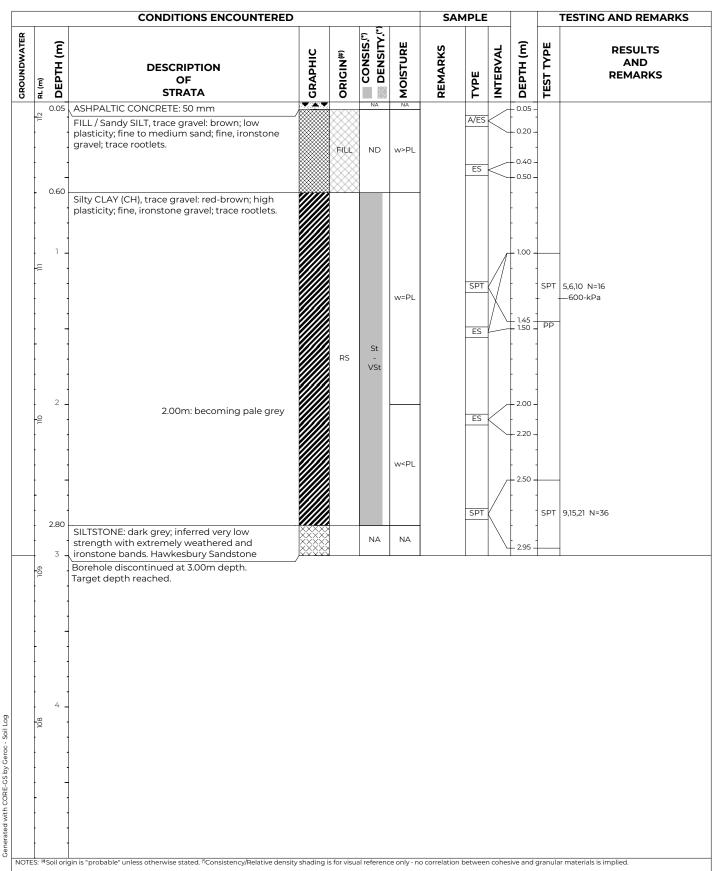
**PLANT:** Bobcat **OPERATOR:** Ground Test (C.S.) LOGGED: CSY METHOD: AD/T to 4.0 m **CASING:** Uncased



**CLIENT:** School Infrastructure NSW

**PROJECT:** Proposed Multi-Purpose Medium Hall

LOCATION: 38-54 and 66 Eton Street, Sutherland, NSW 2232


SURFACE LEVEL: 112.1 AHD

**COORDINATE:** E:320805.6, N:6232503.6 **PROJECT No:** 224456.01

**DATUM/GRID:** MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: BH104
PROJECT No: 2244560

**DATE:** 16/07/24 **SHEET:** 1 of 1



 PLANT: Bobcat
 OPERATOR: Ground Test (C.S.)
 LOGGED: CSY

 METHOD: AD/T to 3.0 m
 CASING: Uncased



**CLIENT:** School Infrastructure NSW

**PROJECT:** Proposed Multi-Purpose Medium Hall

**LOCATION:** 38-54 and 66 Eton Street, Sutherland, NSW 2232

**SURFACE LEVEL:** 112.1 AHD

**COORDINATE:** E:320808.7, N:6232503.2 **PROJECT No:** 224456.01

DATUM/GRID: MGA2020 Zone 56 DIP/AZIMUTH: 90°/---° LOCATION ID: BH105

**DATE:** 16/07/24 **SHEET:** 1 of 1

|        |                  | CONDITIONS ENCOUNTERED                                                                                                                                                                                      |         |                        |                        |                                                                                  | SAI     | MPLE |          |                      |           | TESTING AND REMARKS       |
|--------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|------------------------|----------------------------------------------------------------------------------|---------|------|----------|----------------------|-----------|---------------------------|
| RL (m) | <b>DEPTH (m)</b> | DESCRIPTION<br>OF<br>STRATA                                                                                                                                                                                 | GRAPHIC | ORIGIN(#)              | CONSIS.(*) DENSITY.(*) | MOISTURE                                                                         | REMARKS | TYPE | INTERVAL | DЕРТН (m)            | TEST TYPE | RESULTS<br>AND<br>REMARKS |
|        | 0.10             | ASPHALTIC CONCRETE: 100 mm                                                                                                                                                                                  | X÷X     |                        | NA                     | NA                                                                               |         |      |          | 0.10                 |           |                           |
| +      | 0.10             | FILL / Silty SAND, trace gravel: brown; fine to medium; low plasticity silt; fine, ironstone gravel; trace plaster and root fibers.                                                                         |         | FILL                   | ND                     | М                                                                                |         | ES   |          | - 0.10 -<br>- 0.20 - |           |                           |
|        | 0.60             | FILL / Silty CLAY, with sand, trace gravel: brown and red-brown; low to medium plasticity; fine to medium sand; fine to medium, igneous and ironstone gravel; trace root fibers, possibly reworked natural. |         | FILL<br>possibly<br>RS |                        |                                                                                  |         | ES   |          | - 0.40 -<br>- 0.50 - |           |                           |
| -==    | 1 -              | Silty CLAY (CH), trace gravel: red-brown; high plasticity; fine, ironstone gravel; trace roots.  1.20m: becoming pale grey                                                                                  |         | RS                     |                        | w=PL                                                                             |         | A/ES |          | - 0.80 -<br>- 1.00 - | SPT       | 5,9,9 N=18                |
|        | 1.70             | Silty Gravelly CLAY (CI): pale grey mottled red-                                                                                                                                                            |         |                        | VSt<br>-<br>H          |                                                                                  |         |      |          | 1.45                 | PP        | 500-kPa                   |
|        | 2 -              | brown; medium plasticity; fine to medium, siltstone and ironstone gravel.                                                                                                                                   |         | xwm                    |                        | w <pl< td=""><td></td><td>A</td><td></td><td>- 1.80</td><td></td><td></td></pl<> |         | A    |          | - 1.80               |           |                           |
| 601    | 2.70             | SILTSTONE: dark grey; inferred very low to low strength with extremely weathered and ironstone bands. Hawkesbury Sandstone  Borehole discontinued at 4.00m depth.                                           |         |                        | NA                     | NA                                                                               |         | A    |          | - 2.90 - 3.00 - 3.20 | SPT       | 6,17,18/100 (HB)          |
| 108    | -<br>-<br>-<br>- | Target depth reached.  gin is "probable" unless otherwise stated. "Consistency/Relative densit                                                                                                              |         |                        |                        |                                                                                  |         |      |          |                      |           |                           |

PLANT: Bobcat OPERATOR: Ground Test (C.S.) LOGGED: CSY
METHOD: AD/T to 4.0 m CASING: Uncased



## Terminology, Symbols and Abbreviations



### Introduction to Terminology, Symbols and Abbreviations

Douglas Partners' reports, investigation logs, and other correspondence may use terminology which has quantitative or qualitative connotations. To remove ambiguity or uncertainty surrounding the use of such terms, the following sets of notes pages may be attached Douglas Partners' reports, depending on the work performed and conditions encountered:

- Soil Descriptions;
- Rock Descriptions; and
- Sampling, insitu testing, and drilling methodologies

In addition to these pages, the following notes generally apply to most documents.

### **Abbreviation Codes**

Site conditions may also be presented in a number of different formats, such as investigation logs, field mapping, or as a written summary. In some of these formats textual or symbolic terminology may be presented using textual abbreviation codes or graphic symbols, and, where commonly used, these are listed alongside the terminology definition. For ease of identification in these note pages, textual codes are presented in these notes in the following style XW. Code usage conforms with the following guidelines:

- Textual codes are case insensitive, although herein they are generally presented in upper case; and
- Textual codes are contextual (i.e. the same or similar combinations of characters may be used in different contexts with different meanings (for example `PL` is used for plastic limit in the context of soil moisture condition, as well as in `PL(A)` for point load test result in the testing results column)).

#### **Data Integrity Codes**

Subsurface investigation data recorded by Douglas Partners is generally managed in a highly structured database environment, where records "span" between a top and bottom depth interval. Depth interval "gaps" between records are considered to introduce ambiguity, and, where appropriate, our practice guidelines may require contiguous data sets. Recording meaningful data is not always appropriate (for example assigning a "strength" to a concrete pavement) and the following codes may be used to maintain contiguity in such circumstances.

| Term           | Description                                                                                                                                                             | Abbreviation<br>Code |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Core loss      | No core recovery                                                                                                                                                        | KL                   |
| Unknown        | Information was not available to allow classification of the property. For example, when auguring in loose, saturated sand auger cuttings may not be returned.          | UK                   |
| No data        | Information required to allow classification of the property was not available. For example if drilling is commenced from the base of a hole predrilled by others       | ND                   |
| Not Applicable | Derivation of the properties not appropriate or beyond the scope of<br>the investigation. For example providing a description of the strength<br>of a concrete pavement | NA                   |

#### **Graphic Symbols**

Douglas Partners' logs contain a "graphic" column which provides a pictorial representation of the basic composition of the material. The symbols used are directly representing the material name stated in the adjacent "Description of Strata" column, and as such no specific graphic symbology legend has been provided in these notes.


| intentionally blank |
|---------------------|
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |





#### Introduction

All materials which are not considered to be "in-situ rock" are described in general accordance with the soil description model of AS 1726-2017 Part 6.1.3, and can be broken down into the following description structure:



The "classification" comprises a two character "group symbol" providing a general summary of dominant soil characteristics. The "name" summarises the particle sizes within the soil which most influence its behaviour. The detailed description presents more information about composition, condition, structure, and origin of the soil.

Classification, naming and description of soils require the relative proportion of particles of different sizes within the whole soil mixture to be considered.

Particle size designation and Behaviour Model

Solid particles within a soil are differentiated on the basis of size.

The engineering behaviour properties of a soil can subsequently be modelled to be either "fine grained" (also known as "cohesive" behaviour) or "coarse grained" ("non cohesive" behaviour), depending on the relative proportion of fine or coarse fractions in the soil mixture.

| Particle Size       | Particle      | Behavi       | our Model        |  |  |
|---------------------|---------------|--------------|------------------|--|--|
| Designation         | Size          | Behaviour    | Approximate      |  |  |
|                     | (mm)          |              | Dry Mass         |  |  |
| Boulder             | >200          | Excluded fro | om particle      |  |  |
| Cobble              | 63 - 200      | behaviour m  | nodel as         |  |  |
|                     |               | "oversize"   |                  |  |  |
| Gravel <sup>1</sup> | 2.36 - 63     | Coarse       | >65%             |  |  |
| Sand <sup>1</sup>   | 0.075 - 2.36  | Coarse       | <sup>2</sup> 65% |  |  |
| Silt                | 0.002 - 0.075 | Fine         | >35%             |  |  |
| Clay                | ay <0.002     |              | - 55/0           |  |  |

<sup>&</sup>lt;sup>1</sup> – refer grain size subdivision descriptions below

The behaviour model boundaries defined above are not precise, and the material behaviour should be assumed from the name given to the material (which considers the particle fraction which dominates the behaviour, refer "component proportions" below), rather than strict observance of the proportions of particle sizes. For example, if a material is named a "Sandy CLAY", this is indicative that the material exhibits fine grained behaviour, even if the dry mass of coarse grained material may exceed 65%.

### Component proportions

The relative proportion of the dry mass of each particle size fraction is assessed to be a "primary", "secondary", or "minor" component of the soil mixture, depending on its influence over the soil behaviour.

| Component              | Definition <sup>1</sup>                                                                                      | Relative Proportion                                       |                                                                                                          |  |
|------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| Proportion Designation |                                                                                                              | In Fine Grained Soil                                      | In Coarse Grained<br>Soil                                                                                |  |
| Primary                | The component (particle size designation, refer above) which dominates the engineering behaviour of the soil | The clay/silt<br>component with the<br>greater proportion | The sand/gravel component with the greater proportion                                                    |  |
| Secondary              | Any component which is not the primary, but is significant to the engineering properties of the soil         | Any component with greater than 30% proportion            | Any granular<br>component with<br>greater than 30%; or<br>Any fine component<br>with greater than<br>12% |  |
| Minor <sup>2</sup>     | Present in the soil, but not significant to its engineering properties                                       | All other components                                      | All other components                                                                                     |  |

<sup>&</sup>lt;sup>1</sup> As defined in AS1726-2017 6.1.4.4

#### Composite Materials

In certain situations, a lithology description may describe more than one material, for example, collectively describing a layer of interbedded sand and clay. In such a scenario, the two materials would be described independently, with the names preceded or followed by a statement describing the arrangement by which the materials co-exist. For example, "INTERBEDDED Silty CLAY AND SAND".



<sup>&</sup>lt;sup>2</sup> In the detailed material description, minor components are split into two further sub-categories. Refer "identification of minor components" below.

#### Classification

The soil classification comprises a two character group symbol. The first character identifies the primary component. The second character identifies either the grading or presence of fines in a coarse grained soil, or the plasticity in a fine grained soil. Refer AS1726-2017 6.1.6 for further clarification.

#### Soil Name

For most soils, the name is derived with the primary component included as the noun (in upper case), preceded by any secondary components stated in an adjective form. In this way, the soil name also describes the general composition and indicates the dominant behaviour of the material.

| Component | Prominence in Soil Name         |
|-----------|---------------------------------|
| Primary   | Noun (eg "CLAY")                |
| Secondary | Adjective modifier (eg "Sandy") |
| Minor     | No influence                    |

<sup>&</sup>lt;sup>1</sup> – for determination of component proportions, refer component proportions on previous page

For materials which cannot be disaggregated, or which are not comprised of rock or mineral fragments, the names "ORGANIC MATTER" or "ARTIFICIAL MATERIAL" may be used, in accordance with AS1726-2017 Table 14.

Commercial or colloquial names are not used for the soil name where a component derived name is possible (for example "Gravelly SAND" rather than "CRACKER DUST").

Materials of "fill" or "topsoil" origin are generally assigned a name derived from the primary/secondary component (where appropriate). In log descriptions this is preceded by uppercase "FILL" or "TOPSOIL". Origin uncertainty is indicated in the description by the characters (?), with the degree of uncertainty described (using the terms "probably" or "possibly" in the origin column, or at the end of the description).

### Identification of minor components

Minor components are identified in the soil description immediately following the soil name. The minor component fraction is usually preceded with a term indicating the relative proportion of the component.

| Minor Component | Relative Proportion   |                        |
|-----------------|-----------------------|------------------------|
| Proportion Term | In Fine Grained Soil  | In Coarse Grained Soil |
| With            | All fractions: 15-30% | Clay/silt: 5-12%       |
|                 |                       | sand/gravel: 15-30%    |
| Trace           | All fractions: 0-15%  | Clay/silt: 0-5%        |
|                 |                       | sand/gravel: 0-15%     |

The terms "with" and "trace" generally apply only to gravel or fine particle fractions. Where cobbles/boulders are encountered in minor proportions (generally less than about 12%) the term "occasional" may be used. This term describes the sporadic distribution of the material within the confines of the investigation excavation only, and there may be considerable variation in proportion over a wider area which is difficult to factually characterise due to the relative size of the particles and the investigation methods.

### **Soil Composition**

Plasticity

| Descriptive | Laboratory liquid limit range |                |
|-------------|-------------------------------|----------------|
| Term        | Silt                          | Clay           |
| Non-plastic | Not applicable                | Not applicable |
| materials   |                               |                |
| Low         | ≤50                           | ≤35            |
| plasticity  |                               |                |
| Medium      | Not applicable                | >35 and ≤50    |
| plasticity  |                               |                |
| High        | >50                           | >50            |
| plasticity  |                               |                |

Note, Plasticity descriptions generally describe the plasticity behaviour of the whole of the fine grained soil, not individual fine grained fractions.

<u>Grain Size</u>

| Туре   |        | Particle size (mm) |
|--------|--------|--------------------|
| Gravel | Coarse | 19 - 63            |
|        | Medium | 6.7 - 19           |
|        | Fine   | 2.36 – 6.7         |
| Sand   | Coarse | 0.6 - 2.36         |
|        | Medium | 0.21 - 0.6         |
|        | Fine   | 0.075 - 0.21       |

#### Grading

| <b>Grading Term</b> | Particle size (mm)            |
|---------------------|-------------------------------|
| Well                | A good representation of all  |
|                     | particle sizes                |
| Poorly              | An excess or deficiency of    |
|                     | particular sizes within the   |
|                     | specified range               |
| Uniformly           | Essentially of one size       |
| Gap                 | A deficiency of a particular  |
|                     | size or size range within the |
|                     | total range                   |

Note, AS1726-2017 provides terminology for additional attributes not listed here.



### **Soil Condition**

#### **Moisture**

The moisture condition of soils is assessed relative to the plastic limit for fine grained soils, while for coarse grained soils it is assessed based on the appearance and feel of the material. The moisture condition of a material is considered to be independent of stratigraphy (although commonly these are related), and this data is presented in its own column on logs.

| Applicability | Term                 | Tactile Assessment                                                                           | Abbreviation code   |
|---------------|----------------------|----------------------------------------------------------------------------------------------|---------------------|
| Fine          | Dry of plastic limit | Hard and friable or powdery                                                                  | w <pl< td=""></pl<> |
|               | Near plastic limit   | Can be moulded                                                                               | w=PL                |
|               | Wet of plastic limit | Water residue remains on hands when handling                                                 | w>PL                |
|               | Near liquid limit    | "oozes" when agitated                                                                        | w=LL                |
|               | Wet of liquid limit  | "oozes"                                                                                      | w>LL                |
| Coarse        | Dry                  | Non-cohesive and free running                                                                | D                   |
|               | Moist                | Feels cool, darkened in colour, particles may stick together                                 | М                   |
|               | Wet                  | Feels cool, darkened in colour, particles may stick together, free water forms when handling | W                   |

The abbreviation code NDF , meaning "not-assessable due to drilling fluid use" may also be used.

Note, observations relating to free ground water or drilling fluids are provided independent of soil moisture condition.

### Consistency/Density/Compaction/Cementation/Extremely Weathered Material

These concepts give an indication of how the material may respond to applied forces (when considered in conjunction with other attributes of the soil). This behaviour can vary independent of the composition of the material, and on logs these are described in an independent column and are generally mutually exclusive (i.e it is inappropriate to describe both consistency and compaction at the same time). The method by which the behaviour is described depends on the behaviour model and other characteristics of the soil as follows:

- In fine grained soils, the "consistency" describes the ease with which the soil can be remoulded, and is generally correlated against the materials undrained shear strength;
- In granular materials, the relative density describes how tightly packed the particles are, and is generally correlated against the density index;
- In anthropogenically modified materials, the compaction of the material is described qualitatively;
- In cemented soils (both natural and anthropogenic), the cemented "strength" is described qualitatively, relative to the difficulty with which the material is disaggregated; and
- In soils of extremely weathered material origin, the engineering behaviour may be governed by relic rock features, and expected behaviour needs to be assessed based the overall material description.

Quantitative engineering performance of these materials may be determined by laboratory testing or estimated by correlated field tests (for example penetration or shear vane testing). In some cases, performance may be assessed by tactile or other subjective methods, in which case investigation logs will show the estimated value enclosed in round brackets, for example (VS).

Consistency (fine grained soils)

| Consistency<br>Term | Tactile Assessment                                  | Undrained<br>Shear<br>Strength (kPa) | Abbreviation<br>Code |
|---------------------|-----------------------------------------------------|--------------------------------------|----------------------|
| Very soft           | Extrudes between fingers when squeezed              | <12                                  | VS                   |
| Soft                | Mouldable with light finger pressure                | >12 - ≤25                            | S                    |
| Firm                | Mouldable with strong finger pressure               | >25 - ≤50                            | F                    |
| Stiff               | Cannot be moulded by fingers                        | >50 - ≤100                           | St                   |
| Very stiff          | Indented by thumbnail                               | >100 - ≤200                          | VSt                  |
| Hard                | Indented by thumbnail with difficulty               | >200                                 | Н                    |
| Friable             | Easily crumbled or broken into small pieces by hand | -                                    | Fr                   |

Relative Density (coarse grained soils)

| Relative Density Term | Density Index | Abbreviation Code |
|-----------------------|---------------|-------------------|
| Very loose            | <15           | VL                |
| Loose                 | >15 - ≤35     | L                 |
| Medium dense          | >35 - ≤65     | MD                |
| Dense                 | >65 - ≤85     | D                 |
| Very dense            | >85           | VD                |

Note, tactile assessment of relative density is difficult, and generally requires penetration testing, hence a tactile assessment guide is not provided.



Compaction (anthropogenically modified soil)

| Compaction Term      | Abbreviation Code |
|----------------------|-------------------|
| Well compacted       | WC                |
| Poorly compacted     | PC                |
| Moderately compacted | MC                |
| Variably compacted   | VC                |

### Cementation (natural and anthropogenic)

| Cementation Term    | Abbreviation Code |  |
|---------------------|-------------------|--|
| Moderately cemented | MOD               |  |
| Weakly cemented     | WEK               |  |

#### **Extremely Weathered Material**

AS1726-2017 considers weathered material to be soil if the unconfined compressive strength is less than 0.6 MPa (i.e. less than very low strength rock). These materials may be identified as "extremely weathered material" in reports and by the abbreviation code XWM on log sheets. This identification is not correlated to any specific qualitative or quantitative behaviour, and the engineering properties of this material must therefore be assessed according to engineering principles with reference to any relic rock structure, fabric, or texture described in the description.

### **Soil Origin**

| Term                            | Description                                                                                                                                                         | Abbreviation<br>Code |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Residual                        | Derived from in-situ weathering of the underlying rock                                                                                                              | RS                   |
| Extremely<br>weathered material | Formed from in-situ weathering of geological formations. Has strength of less than 'very low' as per as1726 but retains the structure or fabric of the parent rock. | XWM                  |
| Alluvial                        | Deposited by streams and rivers                                                                                                                                     | ALV                  |
| Fluvial                         | Deposited by channel fill and overbank (natural levee, crevasse splay or flood basin)                                                                               | FLV                  |
| Estuarine                       | Deposited in coastal estuaries                                                                                                                                      | EST                  |
| Marine                          | Deposited in a marine environment                                                                                                                                   | MAR                  |
| Lacustrine                      | Deposited in freshwater lakes                                                                                                                                       | LAC                  |
| Aeolian                         | Carried and deposited by wind                                                                                                                                       | AEO                  |
| Colluvial                       | Soil and rock debris transported down slopes by gravity                                                                                                             | COL                  |
| Slopewash                       | Thin layers of soil and rock debris gradually and slowly deposited by gravity and possibly water                                                                    | SW                   |
| Topsoil                         | Mantle of surface soil, often with high levels of organic material                                                                                                  | TOP                  |
| Fill                            | Any material which has been moved by man                                                                                                                            | FILL                 |
| Littoral                        | Deposited on the lake or seashore                                                                                                                                   | LIT                  |
| Unidentifiable                  | Not able to be identified                                                                                                                                           | UID                  |

### **Cobbles and Boulders**

The presence of particles considered to be "oversize" may be described using one of the following strategies:

- Oversize encountered in a minor proportion (when considered relative to the wider area) are noted in the soil description; or
- Where a significant proportion of oversize is encountered, the cobbles/boulders are described independent of the soil description, in a similar manner to composite soils (described above) but qualified with "MIXTURE OF".

| <br>intentionally blank |
|-------------------------|
|                         |
|                         |
|                         |



# Sampling, Testing and Excavation Methodology



March 2024

### Sampling and Testing

A record of samples retained, and field testing performed is usually shown on a Douglas Partners' log with samples appearing to the left of a depth scale, and selected field and laboratory testing (including results, where relevant) appearing to the right of the scale, as illustrated below:

| SA                | MPLE |          |                  |           | TESTING                   |
|-------------------|------|----------|------------------|-----------|---------------------------|
| SAMPLE<br>REMARKS | TYPE | INTERVAL | DEPTH (m)        | TEST TYPE | RESULTS<br>AND<br>REMARKS |
|                   | SPT  |          | - 1.0 -<br>-1.45 | SPT       | 4,9,11<br>N=20            |

### <u>Sampling</u>

The type or intended purpose for which a sample was taken is indicated by the following abbreviation codes.

| Sample Type                  | Code           |
|------------------------------|----------------|
| Auger sample                 | Α              |
| Acid Sulfate sample          | ASS            |
| Bulk sample                  | В              |
| Core sample                  | C              |
| Disturbed sample             | D              |
| Environmental sample         | ES             |
| Gas sample                   | G              |
| Piston sample                | Р              |
| Sample from SPT test         | SPT            |
| Undisturbed tube sample      | U <sup>1</sup> |
| Water sample                 | W              |
| Material Sample              | MT             |
| Core sample for unconfined   | UCS            |
| compressive strength testing |                |

<sup>1 -</sup> numeric suffixes indicate tube diameter/width in mm

The above codes only indicate that a sample was retained, and not that testing was scheduled or performed.

### Field and Laboratory Testing

A record that field and laboratory testing was performed is indicated by the following abbreviation codes.

| Test Type                       | Code |
|---------------------------------|------|
| Pocket penetrometer (kPa)       | PP   |
| Photo ionisation detector (ppm) | PID  |
| Standard Penetration Test       | SPT  |
| x/y =x blows for y mm           |      |
| penetration                     |      |
| HB = hammer bouncing            |      |
| HW = fell under weight of       |      |
| hammer                          |      |
| Shear vane (kPa)                |      |
| Unconfined compressive          | UCS  |
| strength, (MPa)                 |      |

Field and laboratory testing (continued)

| Test Type                          | Code    |
|------------------------------------|---------|
| Point load test, (MPa),            | PLT(_)  |
| axial (A) , diametric (D) ,        |         |
| irregular (I)                      |         |
| Dynamic cone penetrometer,         | DCP/150 |
| followed by blow count             |         |
| penetration increment in mm        |         |
| (cone tip, generally in            |         |
| accordance with AS1289.6.3.2)      |         |
| Perth sand penetrometer,           | PSP/150 |
| followed by blow count             |         |
| penetration increment in mm        |         |
| (flat tip, generally in accordance |         |
| with AS1289.6.3.3)                 |         |

### **Groundwater Observations**

| $\triangleright$    | seepage/inflow                    |
|---------------------|-----------------------------------|
| $\overline{\nabla}$ | standing or observed water level  |
| NFGWO               | no free groundwater observed      |
| OBS                 | observations obscured by drilling |
|                     | fluids                            |

### **Drilling or Excavation Methods/Tools**

The drilling/excavation methods used to perform the investigation may be shown either in a dedicated column down the left-hand edge of the log, or stated in the log footer. In some circumstances abbreviation codes may be used.

| Method                        | Abbreviation<br>Code |
|-------------------------------|----------------------|
| Direct Push                   | DP                   |
| Solid flight auger. Suffixes: | AD <sup>1</sup>      |
| /T = tungsten carbide tip,    |                      |
| /V = v-shaped tip             |                      |
| Air Track                     | AT                   |
| Diatube                       | DT <sup>1</sup>      |
| Hand auger                    | HA <sup>1</sup>      |
| Hand tools (unspecified)      | HAND                 |
| Existing exposure             | Χ                    |
| Hollow flight auger           | HSA <sup>1</sup>     |
| HQ coring                     | HQ3                  |
| HMLC series coring            | HMLC                 |
| NMLC series coring            | NMLC                 |
| NQ coring                     | NQ3                  |
| PQ coring                     | PQ3                  |
| Predrilled                    | PD                   |
| Push tube                     | $PT_1$               |
| Ripping tyne/ripper           | R                    |
| Rock roller                   | RR <sup>1</sup>      |
| Rock breaker/hydraulic        | EH                   |
| hammer                        |                      |
| Sonic drilling                | SON1                 |
| Mud/blade bucket              | MB <sup>1</sup>      |
| Toothed bucket                | TB <sup>1</sup>      |
| Vibrocore                     | VC <sup>1</sup>      |
| Vacuum excavation             | VE                   |
| Wash bore (unspecified bit    | WB <sup>1</sup>      |
| type)                         |                      |

<sup>1 –</sup> numeric suffixes indicate tool diameter/width in mm



## Appendix H

Laboratory Analysis Certificates



Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

### **CERTIFICATE OF ANALYSIS 357021**

| Client Details |                                       |
|----------------|---------------------------------------|
| Client         | Douglas Partners Pty Ltd              |
| Attention      | Paul Gorman                           |
| Address        | 96 Hermitage Rd, West Ryde, NSW, 2114 |

| Sample Details                       |                      |
|--------------------------------------|----------------------|
| Your Reference                       | 224456.00 Sutherland |
| Number of Samples                    | 9 Soil               |
| Date samples received                | 19/07/2024           |
| Date completed instructions received | 19/07/2024           |

### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                                                                        |                                                                 |  |  |  |  |  |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|--|
| Date results requested by                                                             | 26/07/2024                                                      |  |  |  |  |  |
| Date of Issue                                                                         | 26/07/2024                                                      |  |  |  |  |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full. |                                                                 |  |  |  |  |  |
| Accredited for compliance with ISO/IE                                                 | C 17025 - Testing. Tests not covered by NATA are denoted with * |  |  |  |  |  |

### **Asbestos Approved By**

Analysed by Asbestos Approved Analyst: Lucy Zhu
Authorised by Asbestos Approved Signatory: Lucy Zhu

### **Results Approved By**

Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Lucy Zhu, Asbestos Supervisor Timothy Toll, Senior Chemist

### **Authorised By**

Nancy Zhang, Laboratory Manager



| vTRH(C6-C10)/BTEXN in Soil                           |       |            |            |            |            |            |  |
|------------------------------------------------------|-------|------------|------------|------------|------------|------------|--|
| Our Reference                                        |       | 357021-1   | 357021-2   | 357021-3   | 357021-4   | 357021-5   |  |
| Your Reference                                       | UNITS | BH101      | BH102      | BH103      | BH103      | BH104      |  |
| Depth                                                |       | 0.4-0.5    | 0.4-0.5    | 0-0.1      | 0.8-1      | 0.4-0.5    |  |
| Date Sampled                                         |       | 16/07/2024 | 16/07/2024 | 16/07/2024 | 16/07/2024 | 16/07/2024 |  |
| Type of sample                                       |       | Soil       | Soil       | Soil       | Soil       | Soil       |  |
| Date extracted                                       | -     | 22/07/2024 | 22/07/2024 | 22/07/2024 | 22/07/2024 | 22/07/2024 |  |
| Date analysed                                        | -     | 23/07/2024 | 23/07/2024 | 26/07/2024 | 23/07/2024 | 23/07/2024 |  |
| TRH C <sub>6</sub> - C <sub>9</sub>                  | mg/kg | <25        | <25        | <25        | <25        | <25        |  |
| TRH C <sub>6</sub> - C <sub>10</sub>                 | mg/kg | <25        | <25        | <25        | <25        | <25        |  |
| vTRH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | mg/kg | <25        | <25        | <25        | <25        | <25        |  |
| Benzene                                              | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |  |
| Toluene                                              | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |  |
| Ethylbenzene                                         | mg/kg | <1         | <1         | <1         | <1         | <1         |  |
| m+p-xylene                                           | mg/kg | <2         | <2         | <2         | <2         | <2         |  |
| o-Xylene                                             | mg/kg | <1         | <1         | <1         | <1         | <1         |  |
| Naphthalene                                          | mg/kg | <1         | <1         | <1         | <1         | <1         |  |
| Total +ve Xylenes                                    | mg/kg | <1         | <1         | <1         | <1         | <1         |  |
| Surrogate aaa-Trifluorotoluene                       | %     | 68         | 88         | 107        | 120        | 87         |  |

| vTRH(C6-C10)/BTEXN in Soil                           |       |            |            |            |            |
|------------------------------------------------------|-------|------------|------------|------------|------------|
| Our Reference                                        |       | 357021-6   | 357021-7   | 357021-8   | 357021-9   |
| Your Reference                                       | UNITS | BH105      | BD1        | TS         | ТВ         |
| Depth                                                |       | 0.4-0.5    | -          | -          | -          |
| Date Sampled                                         |       | 16/07/2024 | 16/07/2024 | 16/07/2024 | 16/07/2024 |
| Type of sample                                       |       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                                       | -     | 22/07/2024 | 22/07/2024 | 22/07/2024 | 22/07/2024 |
| Date analysed                                        | -     | 23/07/2024 | 23/07/2024 | 23/07/2024 | 23/07/2024 |
| TRH C <sub>6</sub> - C <sub>9</sub>                  | mg/kg | <25        | <25        | [NA]       | [NA]       |
| TRH C <sub>6</sub> - C <sub>10</sub>                 | mg/kg | <25        | <25        | [NA]       | [NA]       |
| vTRH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | mg/kg | <25        | <25        | [NA]       | [NA]       |
| Benzene                                              | mg/kg | <0.2       | <0.2       | 113%       | <0.2       |
| Toluene                                              | mg/kg | <0.5       | <0.5       | 113%       | <0.5       |
| Ethylbenzene                                         | mg/kg | <1         | <1         | 113%       | <1         |
| m+p-xylene                                           | mg/kg | <2         | <2         | 113%       | <2         |
| o-Xylene                                             | mg/kg | <1         | <1         | 113%       | <1         |
| Naphthalene                                          | mg/kg | <1         | <1         | [NA]       | [NA]       |
| Total +ve Xylenes                                    | mg/kg | <1         | <1         | [NA]       | [NA]       |
| Surrogate aaa-Trifluorotoluene                       | %     | 116        | 88         | 112        | 94         |

| svTRH (C10-C40) in Soil                                     |       |            |            |            |            |            |
|-------------------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                               |       | 357021-1   | 357021-2   | 357021-3   | 357021-4   | 357021-5   |
| Your Reference                                              | UNITS | BH101      | BH102      | BH103      | BH103      | BH104      |
| Depth                                                       |       | 0.4-0.5    | 0.4-0.5    | 0-0.1      | 0.8-1      | 0.4-0.5    |
| Date Sampled                                                |       | 16/07/2024 | 16/07/2024 | 16/07/2024 | 16/07/2024 | 16/07/2024 |
| Type of sample                                              |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                                              | -     | 22/07/2024 | 22/07/2024 | 22/07/2024 | 22/07/2024 | 22/07/2024 |
| Date analysed                                               | -     | 23/07/2024 | 23/07/2024 | 23/07/2024 | 23/07/2024 | 23/07/2024 |
| TRH C <sub>10</sub> - C <sub>14</sub>                       | mg/kg | <50        | <50        | <50        | <50        | <50        |
| TRH C <sub>15</sub> - C <sub>28</sub>                       | mg/kg | <100       | <100       | 130        | <100       | <100       |
| TRH C <sub>29</sub> - C <sub>36</sub>                       | mg/kg | 300        | <100       | 340        | <100       | <100       |
| Total +ve TRH (C10-C36)                                     | mg/kg | 300        | <50        | 470        | <50        | <50        |
| TRH >C <sub>10</sub> -C <sub>16</sub>                       | mg/kg | <50        | <50        | <50        | <50        | <50        |
| TRH >C <sub>10</sub> -C <sub>16</sub> less Naphthalene (F2) | mg/kg | <50        | <50        | <50        | <50        | <50        |
| TRH >C <sub>16</sub> -C <sub>34</sub>                       | mg/kg | 260        | <100       | 340        | <100       | <100       |
| TRH >C <sub>34</sub> -C <sub>40</sub>                       | mg/kg | 370        | <100       | 360        | <100       | <100       |
| Total +ve TRH (>C10-C40)                                    | mg/kg | 640        | <50        | 700        | <50        | <50        |
| Surrogate o-Terphenyl                                       | %     | 83         | 84         | 80         | 82         | 80         |

| svTRH (C10-C40) in Soil                                     |       |            |            |
|-------------------------------------------------------------|-------|------------|------------|
| Our Reference                                               |       | 357021-6   | 357021-7   |
| Your Reference                                              | UNITS | BH105      | BD1        |
| Depth                                                       |       | 0.4-0.5    | -          |
| Date Sampled                                                |       | 16/07/2024 | 16/07/2024 |
| Type of sample                                              |       | Soil       | Soil       |
| Date extracted                                              | -     | 22/07/2024 | 22/07/2024 |
| Date analysed                                               | -     | 23/07/2024 | 23/07/2024 |
| TRH C <sub>10</sub> - C <sub>14</sub>                       | mg/kg | <50        | <50        |
| TRH C <sub>15</sub> - C <sub>28</sub>                       | mg/kg | <100       | <100       |
| TRH C <sub>29</sub> - C <sub>36</sub>                       | mg/kg | <100       | <100       |
| Total +ve TRH (C10-C36)                                     | mg/kg | <50        | <50        |
| TRH >C <sub>10</sub> -C <sub>16</sub>                       | mg/kg | <50        | <50        |
| TRH >C <sub>10</sub> -C <sub>16</sub> less Naphthalene (F2) | mg/kg | <50        | <50        |
| TRH >C <sub>16</sub> -C <sub>34</sub>                       | mg/kg | <100       | <100       |
| TRH >C <sub>34</sub> -C <sub>40</sub>                       | mg/kg | <100       | <100       |
| Total +ve TRH (>C10-C40)                                    | mg/kg | <50        | <50        |
| Surrogate o-Terphenyl                                       | %     | 84         | 80         |

| PAHs in Soil                   |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                  |       | 357021-1   | 357021-2   | 357021-3   | 357021-4   | 357021-5   |
| Your Reference                 | UNITS | BH101      | BH102      | BH103      | BH103      | BH104      |
| Depth                          |       | 0.4-0.5    | 0.4-0.5    | 0-0.1      | 0.8-1      | 0.4-0.5    |
| Date Sampled                   |       | 16/07/2024 | 16/07/2024 | 16/07/2024 | 16/07/2024 | 16/07/2024 |
| Type of sample                 |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                 | -     | 22/07/2024 | 22/07/2024 | 22/07/2024 | 22/07/2024 | 22/07/2024 |
| Date analysed                  | -     | 22/07/2024 | 23/07/2024 | 23/07/2024 | 22/07/2024 | 22/07/2024 |
| Naphthalene                    | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Acenaphthylene                 | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Acenaphthene                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Fluorene                       | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Phenanthrene                   | mg/kg | <0.1       | <0.1       | 0.2        | <0.1       | <0.1       |
| Anthracene                     | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Fluoranthene                   | mg/kg | <0.1       | <0.1       | 0.6        | <0.1       | <0.1       |
| Pyrene                         | mg/kg | <0.1       | <0.1       | 0.7        | <0.1       | <0.1       |
| Benzo(a)anthracene             | mg/kg | <0.1       | <0.1       | 0.5        | <0.1       | <0.1       |
| Chrysene                       | mg/kg | <0.1       | <0.1       | 0.4        | <0.1       | <0.1       |
| Benzo(b,j+k)fluoranthene       | mg/kg | <0.2       | <0.2       | 0.9        | <0.2       | <0.2       |
| Benzo(a)pyrene                 | mg/kg | <0.05      | <0.05      | 0.53       | <0.05      | <0.05      |
| Indeno(1,2,3-c,d)pyrene        | mg/kg | <0.1       | <0.1       | 0.3        | <0.1       | <0.1       |
| Dibenzo(a,h)anthracene         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Benzo(g,h,i)perylene           | mg/kg | <0.1       | <0.1       | 0.4        | <0.1       | <0.1       |
| Total +ve PAH's                | mg/kg | <0.05      | <0.05      | 4.5        | <0.05      | <0.05      |
| Benzo(a)pyrene TEQ calc (zero) | mg/kg | <0.5       | <0.5       | 0.7        | <0.5       | <0.5       |
| Benzo(a)pyrene TEQ calc(half)  | mg/kg | <0.5       | <0.5       | 0.8        | <0.5       | <0.5       |
| Benzo(a)pyrene TEQ calc(PQL)   | mg/kg | <0.5       | <0.5       | 0.8        | <0.5       | <0.5       |
| Surrogate p-Terphenyl-d14      | %     | 121        | 84         | 77         | 126        | 108        |

| PAHs in Soil                   |       |            |            |
|--------------------------------|-------|------------|------------|
| Our Reference                  |       | 357021-6   | 357021-7   |
| Your Reference                 | UNITS | BH105      | BD1        |
| Depth                          |       | 0.4-0.5    | -          |
| Date Sampled                   |       | 16/07/2024 | 16/07/2024 |
| Type of sample                 |       | Soil       | Soil       |
| Date extracted                 | -     | 22/07/2024 | 22/07/2024 |
| Date analysed                  | -     | 22/07/2024 | 22/07/2024 |
| Naphthalene                    | mg/kg | <0.1       | <0.1       |
| Acenaphthylene                 | mg/kg | <0.1       | <0.1       |
| Acenaphthene                   | mg/kg | <0.1       | <0.1       |
| Fluorene                       | mg/kg | <0.1       | <0.1       |
| Phenanthrene                   | mg/kg | <0.1       | <0.1       |
| Anthracene                     | mg/kg | <0.1       | <0.1       |
| Fluoranthene                   | mg/kg | <0.1       | <0.1       |
| Pyrene                         | mg/kg | <0.1       | <0.1       |
| Benzo(a)anthracene             | mg/kg | <0.1       | <0.1       |
| Chrysene                       | mg/kg | <0.1       | <0.1       |
| Benzo(b,j+k)fluoranthene       | mg/kg | <0.2       | <0.2       |
| Benzo(a)pyrene                 | mg/kg | <0.05      | <0.05      |
| Indeno(1,2,3-c,d)pyrene        | mg/kg | <0.1       | <0.1       |
| Dibenzo(a,h)anthracene         | mg/kg | <0.1       | <0.1       |
| Benzo(g,h,i)perylene           | mg/kg | <0.1       | <0.1       |
| Total +ve PAH's                | mg/kg | <0.05      | <0.05      |
| Benzo(a)pyrene TEQ calc (zero) | mg/kg | <0.5       | <0.5       |
| Benzo(a)pyrene TEQ calc(half)  | mg/kg | <0.5       | <0.5       |
| Benzo(a)pyrene TEQ calc(PQL)   | mg/kg | <0.5       | <0.5       |
| Surrogate p-Terphenyl-d14      | %     | 120        | 117        |

| Organochlorine Pesticides in soil |       |            |            |            |
|-----------------------------------|-------|------------|------------|------------|
| Our Reference                     |       | 357021-2   | 357021-3   | 357021-6   |
| Your Reference                    | UNITS | BH102      | BH103      | BH105      |
| Depth                             |       | 0.4-0.5    | 0-0.1      | 0.4-0.5    |
| Date Sampled                      |       | 16/07/2024 | 16/07/2024 | 16/07/2024 |
| Type of sample                    |       | Soil       | Soil       | Soil       |
| Date extracted                    | -     | 22/07/2024 | 22/07/2024 | 22/07/2024 |
| Date analysed                     | -     | 23/07/2024 | 23/07/2024 | 22/07/2024 |
| alpha-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       |
| НСВ                               | mg/kg | <0.1       | <0.1       | <0.1       |
| beta-BHC                          | mg/kg | <0.1       | <0.1       | <0.1       |
| gamma-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       |
| Heptachlor                        | mg/kg | <0.1       | <0.1       | <0.1       |
| delta-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       |
| Aldrin                            | mg/kg | <0.1       | <0.1       | <0.1       |
| Heptachlor Epoxide                | mg/kg | <0.1       | <0.1       | <0.1       |
| gamma-Chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       |
| alpha-chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       |
| Endosulfan I                      | mg/kg | <0.1       | <0.1       | <0.1       |
| pp-DDE                            | mg/kg | <0.1       | <0.1       | <0.1       |
| Dieldrin                          | mg/kg | <0.1       | <0.1       | <0.1       |
| Endrin                            | mg/kg | <0.1       | <0.1       | <0.1       |
| Endosulfan II                     | mg/kg | <0.1       | <0.1       | <0.1       |
| pp-DDD                            | mg/kg | <0.1       | <0.1       | <0.1       |
| Endrin Aldehyde                   | mg/kg | <0.1       | <0.1       | <0.1       |
| pp-DDT                            | mg/kg | <0.1       | <0.1       | <0.1       |
| Endosulfan Sulphate               | mg/kg | <0.1       | <0.1       | <0.1       |
| Methoxychlor                      | mg/kg | <0.1       | <0.1       | <0.1       |
| Mirex                             | mg/kg | <0.1       | <0.1       | <0.1       |
| Total +ve DDT+DDD+DDE             | mg/kg | <0.1       | <0.1       | <0.1       |
| Surrogate 4-Chloro-3-NBTF         | %     | 88         | 91         | 79         |

| Organophosphorus Pesticides in Soil |       |            |            |            |
|-------------------------------------|-------|------------|------------|------------|
| Our Reference                       |       | 357021-2   | 357021-3   | 357021-6   |
| Your Reference                      | UNITS | BH102      | BH103      | BH105      |
| Depth                               |       | 0.4-0.5    | 0-0.1      | 0.4-0.5    |
| Date Sampled                        |       | 16/07/2024 | 16/07/2024 | 16/07/2024 |
| Type of sample                      |       | Soil       | Soil       | Soil       |
| Date extracted                      | -     | 22/07/2024 | 22/07/2024 | 22/07/2024 |
| Date analysed                       | -     | 23/07/2024 | 23/07/2024 | 22/07/2024 |
| Dichlorvos                          | mg/kg | <0.1       | <0.1       | <0.1       |
| Mevinphos                           | mg/kg | <0.1       | <0.1       | <0.1       |
| Phorate                             | mg/kg | <0.1       | <0.1       | <0.1       |
| Dimethoate                          | mg/kg | <0.1       | <0.1       | <0.1       |
| Diazinon                            | mg/kg | <0.1       | <0.1       | <0.1       |
| Disulfoton                          | mg/kg | <0.1       | <0.1       | <0.1       |
| Chlorpyrifos-methyl                 | mg/kg | <0.1       | <0.1       | <0.1       |
| Parathion-Methyl                    | mg/kg | <0.1       | <0.1       | <0.1       |
| Ronnel                              | mg/kg | <0.1       | <0.1       | <0.1       |
| Fenitrothion                        | mg/kg | <0.1       | <0.1       | <0.1       |
| Malathion                           | mg/kg | <0.1       | <0.1       | <0.1       |
| Chlorpyriphos                       | mg/kg | <0.1       | <0.1       | <0.1       |
| Fenthion                            | mg/kg | <0.1       | <0.1       | <0.1       |
| Parathion                           | mg/kg | <0.1       | <0.1       | <0.1       |
| Bromophos-ethyl                     | mg/kg | <0.1       | <0.1       | <0.1       |
| Methidathion                        | mg/kg | <0.1       | <0.1       | <0.1       |
| Fenamiphos                          | mg/kg | <0.1       | <0.1       | <0.1       |
| Ethion                              | mg/kg | <0.1       | <0.1       | <0.1       |
| Phosalone                           | mg/kg | <0.1       | <0.1       | <0.1       |
| Azinphos-methyl (Guthion)           | mg/kg | <0.1       | <0.1       | <0.1       |
| Coumaphos                           | mg/kg | <0.1       | <0.1       | <0.1       |
| Surrogate 4-Chloro-3-NBTF           | %     | 88         | 91         | 79         |

| PCBs in Soil               |       |            |            |            |
|----------------------------|-------|------------|------------|------------|
| Our Reference              |       | 357021-2   | 357021-3   | 357021-6   |
| Your Reference             | UNITS | BH102      | BH103      | BH105      |
| Depth                      |       | 0.4-0.5    | 0-0.1      | 0.4-0.5    |
| Date Sampled               |       | 16/07/2024 | 16/07/2024 | 16/07/2024 |
| Type of sample             |       | Soil       | Soil       | Soil       |
| Date extracted             | -     | 22/07/2024 | 22/07/2024 | 22/07/2024 |
| Date analysed              | -     | 23/07/2024 | 23/07/2024 | 22/07/2024 |
| Aroclor 1016               | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1221               | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1232               | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1242               | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1248               | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1254               | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1260               | mg/kg | <0.1       | <0.1       | <0.1       |
| Total +ve PCBs (1016-1260) | mg/kg | <0.1       | <0.1       | <0.1       |
| Surrogate 2-Fluorobiphenyl | %     | 80         | 82         | 77         |

| Misc Soil - Inorg           |       |            |            |            |
|-----------------------------|-------|------------|------------|------------|
| Our Reference               |       | 357021-2   | 357021-3   | 357021-6   |
| Your Reference              | UNITS | BH102      | BH103      | BH105      |
| Depth                       |       | 0.4-0.5    | 0-0.1      | 0.4-0.5    |
| Date Sampled                |       | 16/07/2024 | 16/07/2024 | 16/07/2024 |
| Type of sample              |       | Soil       | Soil       | Soil       |
| Date prepared               | -     | 25/07/2024 | 25/07/2024 | 25/07/2024 |
| Date analysed               | -     | 25/07/2024 | 25/07/2024 | 25/07/2024 |
| Total Phenolics (as Phenol) | mg/kg | <5         | <5         | <5         |

| Acid Extractable metals in soil |       |            |            |            |            |            |
|---------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                   |       | 357021-1   | 357021-2   | 357021-3   | 357021-4   | 357021-5   |
| Your Reference                  | UNITS | BH101      | BH102      | BH103      | BH103      | BH104      |
| Depth                           |       | 0.4-0.5    | 0.4-0.5    | 0-0.1      | 0.8-1      | 0.4-0.5    |
| Date Sampled                    |       | 16/07/2024 | 16/07/2024 | 16/07/2024 | 16/07/2024 | 16/07/2024 |
| Type of sample                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date prepared                   | -     | 22/07/2024 | 22/07/2024 | 22/07/2024 | 22/07/2024 | 22/07/2024 |
| Date analysed                   | -     | 23/07/2024 | 23/07/2024 | 23/07/2024 | 23/07/2024 | 23/07/2024 |
| Arsenic                         | mg/kg | 10         | 6          | 10         | 20         | 15         |
| Cadmium                         | mg/kg | <0.4       | <0.4       | <0.4       | <0.4       | <0.4       |
| Chromium                        | mg/kg | 18         | 13         | 17         | 29         | 30         |
| Copper                          | mg/kg | 9          | 27         | 40         | 12         | 4          |
| Lead                            | mg/kg | 15         | 50         | 350        | 26         | 20         |
| Mercury                         | mg/kg | <0.1       | <0.1       | 0.2        | <0.1       | <0.1       |
| Nickel                          | mg/kg | 3          | 2          | 9          | 2          | 3          |
| Zinc                            | mg/kg | 10         | 97         | 390        | 13         | 7          |

| Acid Extractable metals in soil |       |            |            |                         |
|---------------------------------|-------|------------|------------|-------------------------|
| Our Reference                   |       | 357021-6   | 357021-7   | 357021-10               |
| Your Reference                  | UNITS | BH105      | BD1        | BH102 -<br>[TRIPLICATE] |
| Depth                           |       | 0.4-0.5    | -          | 0.4-0.5                 |
| Date Sampled                    |       | 16/07/2024 | 16/07/2024 | 16/07/2024              |
| Type of sample                  |       | Soil       | Soil       | Soil                    |
| Date prepared                   | -     | 22/07/2024 | 22/07/2024 | 22/07/2024              |
| Date analysed                   | -     | 23/07/2024 | 23/07/2024 | 23/07/2024              |
| Arsenic                         | mg/kg | 9          | 6          | 5                       |
| Cadmium                         | mg/kg | <0.4       | <0.4       | <0.4                    |
| Chromium                        | mg/kg | 20         | 13         | 12                      |
| Copper                          | mg/kg | 10         | 5          | 90                      |
| Lead                            | mg/kg | 20         | 17         | 41                      |
| Mercury                         | mg/kg | <0.1       | <0.1       | <0.1                    |
| Nickel                          | mg/kg | 2          | 2          | 2                       |
| Zinc                            | mg/kg | 13         | 17         | 90                      |

| Moisture       |       |            |            |            |            |            |
|----------------|-------|------------|------------|------------|------------|------------|
| Our Reference  |       | 357021-1   | 357021-2   | 357021-3   | 357021-4   | 357021-5   |
| Your Reference | UNITS | BH101      | BH102      | BH103      | BH103      | BH104      |
| Depth          |       | 0.4-0.5    | 0.4-0.5    | 0-0.1      | 0.8-1      | 0.4-0.5    |
| Date Sampled   |       | 16/07/2024 | 16/07/2024 | 16/07/2024 | 16/07/2024 | 16/07/2024 |
| Type of sample |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date prepared  | -     | 22/07/2024 | 22/07/2024 | 22/07/2024 | 22/07/2024 | 22/07/2024 |
| Date analysed  | -     | 23/07/2024 | 23/07/2024 | 23/07/2024 | 23/07/2024 | 23/07/2024 |
| Moisture       | %     | 13         | 19         | 16         | 25         | 13         |

| Moisture       |       |            |            |
|----------------|-------|------------|------------|
| Our Reference  |       | 357021-6   | 357021-7   |
| Your Reference | UNITS | BH105      | BD1        |
| Depth          |       | 0.4-0.5    | -          |
| Date Sampled   |       | 16/07/2024 | 16/07/2024 |
| Type of sample |       | Soil       | Soil       |
| Date prepared  | -     | 22/07/2024 | 22/07/2024 |
| Date analysed  | -     | 23/07/2024 | 23/07/2024 |
| Moisture       | %     | 20         | 16         |

| Asbestos ID - soils NEPM              |        |                                                                               |                                                                               |                                                                               |                                                                               |                                                                               |
|---------------------------------------|--------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Our Reference                         |        | 357021-1                                                                      | 357021-2                                                                      | 357021-3                                                                      | 357021-4                                                                      | 357021-5                                                                      |
| Your Reference                        | UNITS  | BH101                                                                         | BH102                                                                         | BH103                                                                         | BH103                                                                         | BH104                                                                         |
| Depth                                 |        | 0.4-0.5                                                                       | 0.4-0.5                                                                       | 0-0.1                                                                         | 0.8-1                                                                         | 0.4-0.5                                                                       |
| Date Sampled                          |        | 16/07/2024                                                                    | 16/07/2024                                                                    | 16/07/2024                                                                    | 16/07/2024                                                                    | 16/07/2024                                                                    |
| Type of sample                        |        | Soil                                                                          | Soil                                                                          | Soil                                                                          | Soil                                                                          | Soil                                                                          |
| Date analysed                         | -      | 25/07/2024                                                                    | 25/07/2024                                                                    | 25/07/2024                                                                    | 25/07/2024                                                                    | 25/07/2024                                                                    |
| Sample mass tested                    | g      | 695.94                                                                        | 430.29                                                                        | 371.7                                                                         | 419.25                                                                        | 665.93                                                                        |
| Sample Description                    | -      | Brown coarse-<br>grained soil &<br>rocks                                      |
| Asbestos ID in soil (AS4964) >0.1g/kg | -      | No asbestos<br>detected at<br>reporting limit of<br>0.1g/kg<br>Organic fibres | No asbestos<br>detected at<br>reporting limit of<br>0.1g/kg<br>Organic fibres | No asbestos<br>detected at<br>reporting limit of<br>0.1g/kg<br>Organic fibres | No asbestos<br>detected at<br>reporting limit of<br>0.1g/kg<br>Organic fibres | No asbestos<br>detected at<br>reporting limit of<br>0.1g/kg<br>Organic fibres |
| Trace Analysis                        | _      | detected No asbestos                                                          | detected No asbestos                                                          | detected<br>No asbestos                                                       | detected<br>No asbestos                                                       | detected<br>No asbestos                                                       |
| Trace Analysis                        | -      | detected                                                                      | detected                                                                      | detected                                                                      | detected                                                                      | detected                                                                      |
| Total Asbestos <sup>#1</sup>          | g/kg   | <0.1                                                                          | <0.1                                                                          | <0.1                                                                          | <0.1                                                                          | <0.1                                                                          |
| Asbestos ID in soil <0.1g/kg*         | -      | No visible asbestos detected                                                  |
| ACM >7mm Estimation*                  | g      | _                                                                             | _                                                                             | _                                                                             | _                                                                             | -                                                                             |
| FA and AF Estimation*                 | g      | _                                                                             | _                                                                             | -                                                                             | -                                                                             | -                                                                             |
| FA and AF Estimation*#2               | %(w/w) | <0.001                                                                        | <0.001                                                                        | <0.001                                                                        | <0.001                                                                        | <0.001                                                                        |
| Asbestos comments                     | -      | Nil                                                                           | Nil                                                                           | Nil                                                                           | Nil                                                                           | Nil                                                                           |

| Asbestos ID - soils NEPM              |        |                                                             |
|---------------------------------------|--------|-------------------------------------------------------------|
| Our Reference                         |        | 357021-6                                                    |
| Your Reference                        | UNITS  | BH105                                                       |
| Depth                                 |        | 0.4-0.5                                                     |
| Date Sampled                          |        | 16/07/2024                                                  |
| Type of sample                        |        | Soil                                                        |
| Date analysed                         | -      | 25/07/2024                                                  |
| Sample mass tested                    | g      | 438.35                                                      |
| Sample Description                    | -      | Brown coarse-<br>grained soil &<br>rocks                    |
| Asbestos ID in soil (AS4964) >0.1g/kg | -      | No asbestos<br>detected at<br>reporting limit of<br>0.1g/kg |
|                                       |        | Organic fibres detected                                     |
| Trace Analysis                        | -      | No asbestos<br>detected                                     |
| Total Asbestos <sup>#1</sup>          | g/kg   | <0.1                                                        |
| Asbestos ID in soil <0.1g/kg*         | -      | No visible asbestos detected                                |
| ACM >7mm Estimation*                  | g      | _                                                           |
| FA and AF Estimation*                 | g      | _                                                           |
| FA and AF Estimation*#2               | %(w/w) | <0.001                                                      |
| Asbestos comments                     | -      | Nil                                                         |

| Misc Inorg - Soil |          |            |
|-------------------|----------|------------|
| Our Reference     |          | 357021-2   |
| Your Reference    | UNITS    | BH102      |
| Depth             |          | 0.4-0.5    |
| Date Sampled      |          | 16/07/2024 |
| Type of sample    |          | Soil       |
| Date prepared     | -        | 24/07/2024 |
| Date analysed     | -        | 24/07/2024 |
| pH 1:5 soil:water | pH Units | 5.7        |

| CEC                      |          |            |
|--------------------------|----------|------------|
| Our Reference            |          | 357021-2   |
| Your Reference           | UNITS    | BH102      |
| Depth                    |          | 0.4-0.5    |
| Date Sampled             |          | 16/07/2024 |
| Type of sample           |          | Soil       |
| Date prepared            | -        | 23/07/2024 |
| Date analysed            | -        | 23/07/2024 |
| Exchangeable Ca          | meq/100g | 3.9        |
| Exchangeable K           | meq/100g | <0.1       |
| Exchangeable Mg          | meq/100g | 1.3        |
| Exchangeable Na          | meq/100g | 0.5        |
| Cation Exchange Capacity | meq/100g | 5.8        |

| Method ID  | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASB-001    | Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.                                                                                                                                                                                                                                                                                                                                                      |
| ASB-001    | Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004.  Results reported denoted with * are outside our scope of NATA accreditation. |
|            | NOTE <sup>#1</sup> Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF relative to the sample mass tested)                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | NOTE <sup>#2</sup> The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.                                                                                                                                                                                                                                                                                                                                                        |
|            | Estimation = Estimated asbestos weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Inorg-001  | pH - Measured using pH meter and electrode. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Inorg-008  | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Inorg-031  | Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Metals-020 | Determination of various metals by ICP-AES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Metals-020 | Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-OES analytical finish.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Metals-021 | Determination of Mercury by Cold Vapour AAS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Method ID       | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-020         | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Org-020         | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Org-021/022/025 | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or GC-MS/GC-MSMS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Org-022/025     | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Org-022/025     | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                 | Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Org-022/025     | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                 | 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" teq="" teqs="" th="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql> |
| Org-023         | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Org-023         | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-023   | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.  Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes. |

Envirolab Reference: 357021 Page | 18 of 31 Revision No: R00

| QUALITY CONT                         | ROL: vTRH | (C6-C10) | /BTEXN in Soil |            |   | Du         |            | Spike Recovery % |            |            |
|--------------------------------------|-----------|----------|----------------|------------|---|------------|------------|------------------|------------|------------|
| Test Description                     | Units     | PQL      | Method         | Blank      | # | Base       | Dup.       | RPD              | LCS-7      | 357021-3   |
| Date extracted                       | -         |          |                | 22/07/2024 | 2 | 22/07/2024 | 22/07/2024 |                  | 22/07/2024 | 22/07/2024 |
| Date analysed                        | -         |          |                | 23/07/2024 | 2 | 23/07/2024 | 23/07/2024 |                  | 23/07/2024 | 23/07/2024 |
| TRH C <sub>6</sub> - C <sub>9</sub>  | mg/kg     | 25       | Org-023        | <25        | 2 | <25        | <25        | 0                | 98         | 76         |
| TRH C <sub>6</sub> - C <sub>10</sub> | mg/kg     | 25       | Org-023        | <25        | 2 | <25        | <25        | 0                | 98         | 76         |
| Benzene                              | mg/kg     | 0.2      | Org-023        | <0.2       | 2 | <0.2       | <0.2       | 0                | 96         | 69         |
| Toluene                              | mg/kg     | 0.5      | Org-023        | <0.5       | 2 | <0.5       | <0.5       | 0                | 89         | 76         |
| Ethylbenzene                         | mg/kg     | 1        | Org-023        | <1         | 2 | <1         | <1         | 0                | 97         | 76         |
| m+p-xylene                           | mg/kg     | 2        | Org-023        | <2         | 2 | <2         | <2         | 0                | 104        | 79         |
| o-Xylene                             | mg/kg     | 1        | Org-023        | <1         | 2 | <1         | <1         | 0                | 94         | 79         |
| Naphthalene                          | mg/kg     | 1        | Org-023        | <1         | 2 | <1         | <1         | 0                | [NT]       | [NT]       |
| Surrogate aaa-Trifluorotoluene       | %         |          | Org-023        | 120        | 2 | 88         | 106        | 19               | 94         | 91         |

| QUALITY CO                            | NTROL: svT | RH (C10 | -C40) in Soil |            |   | Du         | plicate    |     | Spike Re   | covery %   |
|---------------------------------------|------------|---------|---------------|------------|---|------------|------------|-----|------------|------------|
| Test Description                      | Units      | PQL     | Method        | Blank      | # | Base       | Dup.       | RPD | LCS-7      | 357021-3   |
| Date extracted                        | -          |         |               | 22/07/2024 | 2 | 22/07/2024 | 22/07/2024 |     | 22/07/2024 | 22/07/2024 |
| Date analysed                         | -          |         |               | 23/07/2024 | 2 | 23/07/2024 | 23/07/2024 |     | 23/07/2024 | 23/07/2024 |
| TRH C <sub>10</sub> - C <sub>14</sub> | mg/kg      | 50      | Org-020       | <50        | 2 | <50        | <50        | 0   | 111        | 113        |
| TRH C <sub>15</sub> - C <sub>28</sub> | mg/kg      | 100     | Org-020       | <100       | 2 | <100       | <100       | 0   | 108        | 118        |
| TRH C <sub>29</sub> - C <sub>36</sub> | mg/kg      | 100     | Org-020       | <100       | 2 | <100       | <100       | 0   | 100        | #          |
| TRH >C <sub>10</sub> -C <sub>16</sub> | mg/kg      | 50      | Org-020       | <50        | 2 | <50        | <50        | 0   | 111        | 113        |
| TRH >C <sub>16</sub> -C <sub>34</sub> | mg/kg      | 100     | Org-020       | <100       | 2 | <100       | <100       | 0   | 108        | 118        |
| TRH >C <sub>34</sub> -C <sub>40</sub> | mg/kg      | 100     | Org-020       | <100       | 2 | <100       | <100       | 0   | 100        | #          |
| Surrogate o-Terphenyl                 | %          |         | Org-020       | 83         | 2 | 84         | 86         | 2   | 84         | 79         |

| QUA                       | LITY CONTRO | L: PAHs | in Soil     |            |   | Du         | Spike Recovery % |     |            |            |
|---------------------------|-------------|---------|-------------|------------|---|------------|------------------|-----|------------|------------|
| Test Description          | Units       | PQL     | Method      | Blank      | # | Base       | Dup.             | RPD | LCS-7      | 357021-3   |
| Date extracted            | -           |         |             | 22/07/2024 | 2 | 22/07/2024 | 22/07/2024       |     | 22/07/2024 | 22/07/2024 |
| Date analysed             | -           |         |             | 23/07/2024 | 2 | 23/07/2024 | 23/07/2024       |     | 23/07/2024 | 23/07/2024 |
| Naphthalene               | mg/kg       | 0.1     | Org-022/025 | <0.1       | 2 | <0.1       | <0.1             | 0   | 116        | 72         |
| Acenaphthylene            | mg/kg       | 0.1     | Org-022/025 | <0.1       | 2 | <0.1       | <0.1             | 0   | [NT]       | [NT]       |
| Acenaphthene              | mg/kg       | 0.1     | Org-022/025 | <0.1       | 2 | <0.1       | <0.1             | 0   | 120        | 80         |
| Fluorene                  | mg/kg       | 0.1     | Org-022/025 | <0.1       | 2 | <0.1       | <0.1             | 0   | 114        | 78         |
| Phenanthrene              | mg/kg       | 0.1     | Org-022/025 | <0.1       | 2 | <0.1       | <0.1             | 0   | 124        | 82         |
| Anthracene                | mg/kg       | 0.1     | Org-022/025 | <0.1       | 2 | <0.1       | <0.1             | 0   | [NT]       | [NT]       |
| Fluoranthene              | mg/kg       | 0.1     | Org-022/025 | <0.1       | 2 | <0.1       | <0.1             | 0   | 114        | 95         |
| Pyrene                    | mg/kg       | 0.1     | Org-022/025 | <0.1       | 2 | <0.1       | <0.1             | 0   | 126        | 102        |
| Benzo(a)anthracene        | mg/kg       | 0.1     | Org-022/025 | <0.1       | 2 | <0.1       | <0.1             | 0   | [NT]       | [NT]       |
| Chrysene                  | mg/kg       | 0.1     | Org-022/025 | <0.1       | 2 | <0.1       | <0.1             | 0   | 110        | 83         |
| Benzo(b,j+k)fluoranthene  | mg/kg       | 0.2     | Org-022/025 | <0.2       | 2 | <0.2       | <0.2             | 0   | [NT]       | [NT]       |
| Benzo(a)pyrene            | mg/kg       | 0.05    | Org-022/025 | <0.05      | 2 | <0.05      | <0.05            | 0   | 116        | 99         |
| Indeno(1,2,3-c,d)pyrene   | mg/kg       | 0.1     | Org-022/025 | <0.1       | 2 | <0.1       | <0.1             | 0   | [NT]       | [NT]       |
| Dibenzo(a,h)anthracene    | mg/kg       | 0.1     | Org-022/025 | <0.1       | 2 | <0.1       | <0.1             | 0   | [NT]       | [NT]       |
| Benzo(g,h,i)perylene      | mg/kg       | 0.1     | Org-022/025 | <0.1       | 2 | <0.1       | <0.1             | 0   | [NT]       | [NT]       |
| Surrogate p-Terphenyl-d14 | %           |         | Org-022/025 | 81         | 2 | 84         | 83               | 1   | 129        | 76         |

| QUALITY CON               | TROL: Organo | chlorine F | Pesticides in soil |            |   | Du         |            | Spike Recovery % |            |            |
|---------------------------|--------------|------------|--------------------|------------|---|------------|------------|------------------|------------|------------|
| Test Description          | Units        | PQL        | Method             | Blank      | # | Base       | Dup.       | RPD              | LCS-6      | 357021-3   |
| Date extracted            | -            |            |                    | 22/07/2024 | 2 | 22/07/2024 | 22/07/2024 |                  | 22/07/2024 | 22/07/2024 |
| Date analysed             | -            |            |                    | 23/07/2024 | 2 | 23/07/2024 | 23/07/2024 |                  | 23/07/2024 | 23/07/2024 |
| alpha-BHC                 | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | 80         | 84         |
| НСВ                       | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | [NT]       | [NT]       |
| beta-BHC                  | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | 76         | 82         |
| gamma-BHC                 | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | [NT]       | [NT]       |
| Heptachlor                | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | 84         | 80         |
| delta-BHC                 | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | [NT]       | [NT]       |
| Aldrin                    | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | 90         | 84         |
| Heptachlor Epoxide        | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | 94         | 94         |
| gamma-Chlordane           | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | [NT]       | [NT]       |
| alpha-chlordane           | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | [NT]       | [NT]       |
| Endosulfan I              | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | [NT]       | [NT]       |
| pp-DDE                    | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | 84         | 78         |
| Dieldrin                  | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | 100        | 87         |
| Endrin                    | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | 108        | 90         |
| Endosulfan II             | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | [NT]       | [NT]       |
| pp-DDD                    | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | 88         | 92         |
| Endrin Aldehyde           | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | [NT]       | [NT]       |
| pp-DDT                    | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | [NT]       | [NT]       |
| Endosulfan Sulphate       | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | 82         | 82         |
| Methoxychlor              | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | [NT]       | [NT]       |
| Mirex                     | mg/kg        | 0.1        | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0                | [NT]       | [NT]       |
| Surrogate 4-Chloro-3-NBTF | %            |            | Org-022/025        | 88         | 2 | 88         | 90         | 2                | 93         | 88         |

| QUALITY CONT              | ROL: Organopl | nosphorus | Pesticides in Soil |            |   | Duplicate  |            |     | Spike Recovery % |            |  |
|---------------------------|---------------|-----------|--------------------|------------|---|------------|------------|-----|------------------|------------|--|
| Test Description          | Units         | PQL       | Method             | Blank      | # | Base       | Dup.       | RPD | LCS-6            | 357021-3   |  |
| Date extracted            | -             |           |                    | 22/07/2024 | 2 | 22/07/2024 | 22/07/2024 |     | 22/07/2024       | 22/07/2024 |  |
| Date analysed             | -             |           |                    | 23/07/2024 | 2 | 23/07/2024 | 23/07/2024 |     | 23/07/2024       | 23/07/2024 |  |
| Dichlorvos                | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   | 84               | 88         |  |
| Mevinphos                 | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   |                  | [NT]       |  |
| Phorate                   | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   |                  | [NT]       |  |
| Dimethoate                | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   |                  | [NT]       |  |
| Diazinon                  | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   |                  | [NT]       |  |
| Disulfoton                | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   |                  | [NT]       |  |
| Chlorpyrifos-methyl       | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   |                  | [NT]       |  |
| Parathion-Methyl          | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   |                  | [NT]       |  |
| Ronnel                    | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   | 72               | 72         |  |
| Fenitrothion              | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   | 88               | 106        |  |
| Malathion                 | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   | 84               | 88         |  |
| Chlorpyriphos             | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   | 72               | 82         |  |
| Fenthion                  | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   |                  | [NT]       |  |
| Parathion                 | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   | 76               | 92         |  |
| Bromophos-ethyl           | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   |                  | [NT]       |  |
| Methidathion              | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   |                  | [NT]       |  |
| Fenamiphos                | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   |                  | [NT]       |  |
| Ethion                    | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   | 70               | 88         |  |
| Phosalone                 | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   |                  | [NT]       |  |
| Azinphos-methyl (Guthion) | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   |                  | [NT]       |  |
| Coumaphos                 | mg/kg         | 0.1       | Org-022/025        | <0.1       | 2 | <0.1       | <0.1       | 0   |                  | [NT]       |  |
| Surrogate 4-Chloro-3-NBTF | %             |           | Org-022/025        | 88         | 2 | 88         | 90         | 2   | 93               | 88         |  |

| QUALIT                     | Y CONTRO | L: PCBs | in Soil         |            |   | Du         | plicate    |     | Spike Recovery % |            |  |
|----------------------------|----------|---------|-----------------|------------|---|------------|------------|-----|------------------|------------|--|
| Test Description           | Units    | PQL     | Method          | Blank      | # | Base       | Dup.       | RPD | LCS-6            | 357021-3   |  |
| Date extracted             | -        |         |                 | 22/07/2024 | 2 | 22/07/2024 | 22/07/2024 |     | 22/07/2024       | 22/07/2024 |  |
| Date analysed              | -        |         |                 | 23/07/2024 | 2 | 23/07/2024 | 23/07/2024 |     | 23/07/2024       | 23/07/2024 |  |
| Aroclor 1016               | mg/kg    | 0.1     | Org-021/022/025 | <0.1       | 2 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| Aroclor 1221               | mg/kg    | 0.1     | Org-021/022/025 | <0.1       | 2 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| Aroclor 1232               | mg/kg    | 0.1     | Org-021/022/025 | <0.1       | 2 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| Aroclor 1242               | mg/kg    | 0.1     | Org-021/022/025 | <0.1       | 2 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| Aroclor 1248               | mg/kg    | 0.1     | Org-021/022/025 | <0.1       | 2 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| Aroclor 1254               | mg/kg    | 0.1     | Org-021/022/025 | <0.1       | 2 | <0.1       | <0.1       | 0   | 92               | 100        |  |
| Aroclor 1260               | mg/kg    | 0.1     | Org-021/022/025 | <0.1       | 2 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| Surrogate 2-Fluorobiphenyl | %        |         | Org-021/022/025 | 79         | 2 | 80         | 85         | 6   | 83               | 80         |  |

| QUALITY                     | CONTROL: | Misc Soi | il - Inorg |            | Duplicate |            |            |     |            | Spike Recovery % |  |
|-----------------------------|----------|----------|------------|------------|-----------|------------|------------|-----|------------|------------------|--|
| Test Description            | Units    | PQL      | Method     | Blank      | #         | Base       | Dup.       | RPD | LCS-6      | [NT]             |  |
| Date prepared               | -        |          |            | 25/07/2024 | 2         | 25/07/2024 | 25/07/2024 |     | 25/07/2024 | [NT]             |  |
| Date analysed               | -        |          |            | 25/07/2024 | 2         | 25/07/2024 | 25/07/2024 |     | 25/07/2024 | [NT]             |  |
| Total Phenolics (as Phenol) | mg/kg    | 5        | Inorg-031  | <5         | 2         | <5         | <5         | 0   | 99         | [NT]             |  |

| QUALITY CONT     | ROL: Acid E | xtractable | e metals in soil |            |   | Du         | plicate    |     | Spike Re   | covery %   |
|------------------|-------------|------------|------------------|------------|---|------------|------------|-----|------------|------------|
| Test Description | Units       | PQL        | Method           | Blank      | # | Base       | Dup.       | RPD | LCS-7      | 357021-3   |
| Date prepared    | -           |            |                  | 22/07/2024 | 2 | 22/07/2024 | 22/07/2024 |     | 22/07/2024 | 22/07/2024 |
| Date analysed    | -           |            |                  | 23/07/2024 | 2 | 23/07/2024 | 23/07/2024 |     | 23/07/2024 | 23/07/2024 |
| Arsenic          | mg/kg       | 4          | Metals-020       | <4         | 2 | 6          | 6          | 0   | 108        | 93         |
| Cadmium          | mg/kg       | 0.4        | Metals-020       | <0.4       | 2 | <0.4       | <0.4       | 0   | 100        | 89         |
| Chromium         | mg/kg       | 1          | Metals-020       | <1         | 2 | 13         | 16         | 21  | 99         | 93         |
| Copper           | mg/kg       | 1          | Metals-020       | <1         | 2 | 27         | 53         | 65  | 96         | 96         |
| Lead             | mg/kg       | 1          | Metals-020       | <1         | 2 | 50         | 73         | 37  | 97         | 102        |
| Mercury          | mg/kg       | 0.1        | Metals-021       | <0.1       | 2 | <0.1       | <0.1       | 0   | 88         | 82         |
| Nickel           | mg/kg       | 1          | Metals-020       | <1         | 2 | 2          | 2          | 0   | 97         | 89         |
| Zinc             | mg/kg       | 1          | Metals-020       | <1         | 2 | 97         | 100        | 3   | 99         | 129        |

| QUALITY           | CONTROL  | Misc Ino | rg - Soil |            |      | Du   |      | Spike Recovery % |            |      |
|-------------------|----------|----------|-----------|------------|------|------|------|------------------|------------|------|
| Test Description  | Units    | PQL      | Method    | Blank      | #    | Base | Dup. | RPD              | LCS-6      | [NT] |
| Date prepared     | -        |          |           | 24/07/2024 | [NT] | [NT] |      | [NT]             | 24/07/2024 |      |
| Date analysed     | -        |          |           | 24/07/2024 | [NT] | [NT] |      | [NT]             | 24/07/2024 |      |
| pH 1:5 soil:water | pH Units |          | Inorg-001 | [NT]       | [NT] | [NT] | [NT] | [NT]             | 100        |      |

Revision No: R00

Envirolab Reference: 357021 Page | 27 of 31

| QUA              | QUALITY CONTROL: CEC |     |            |            |      |      |      |      | Spike Recovery % |      |  |
|------------------|----------------------|-----|------------|------------|------|------|------|------|------------------|------|--|
| Test Description | Units                | PQL | Method     | Blank      | #    | Base | Dup. | RPD  | LCS-W1           | [NT] |  |
| Date prepared    | -                    |     |            | 23/07/2024 | [NT] |      | [NT] | [NT] | 23/07/2024       |      |  |
| Date analysed    | -                    |     |            | 23/07/2024 | [NT] |      | [NT] | [NT] | 23/07/2024       |      |  |
| Exchangeable Ca  | meq/100g             | 0.1 | Metals-020 | <0.1       | [NT] |      | [NT] | [NT] | 92               |      |  |
| Exchangeable K   | meq/100g             | 0.1 | Metals-020 | <0.1       | [NT] |      | [NT] | [NT] | 94               |      |  |
| Exchangeable Mg  | meq/100g             | 0.1 | Metals-020 | <0.1       | [NT] |      | [NT] | [NT] | 88               |      |  |
| Exchangeable Na  | meq/100g             | 0.1 | Metals-020 | <0.1       | [NT] | [NT] | [NT] | [NT] | 87               | [NT] |  |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

Envirolab Reference: 357021

Revision No: R00

| <b>Quality Contro</b>              | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 357021 Page | 30 of 31 Revision No: R00

### **Report Comments**

TRH Soil C10-C40 NEPM - # Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 357021-2ms have caused interference.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 357021-2 for Cu. Therefore a triplicate result has been issued as laboratory sample number 357021-10.

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Note: All samples analysed as received. However, sample 357021-3 was below the minimum recommended 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

Envirolab Reference: 357021 Page | 31 of 31 Revision No: R00



## CHAIN OF CUSTODY DESPATCH SHEET

| Projec    | ct No:                         | 224456.       | .00         |              | Suburk                                | ):<br>                        | Sutherl               | and              |         |          |                                              |         |               | То:      | Envirol   | ab Servi         | ices      |                                                                    |
|-----------|--------------------------------|---------------|-------------|--------------|---------------------------------------|-------------------------------|-----------------------|------------------|---------|----------|----------------------------------------------|---------|---------------|----------|-----------|------------------|-----------|--------------------------------------------------------------------|
| Projec    | ct Manager:                    | Paul Go       | rman        |              | Order I                               | Number:                       |                       |                  |         | Samp     | ler:                                         | CSY     |               |          | 12 Ash    | ley St, C        | Chatswo   | od NSW 2067                                                        |
| Email:    |                                |               |             | uglaspartne  |                                       |                               |                       |                  |         |          |                                              |         | _             | Attn:    | Sample    | Receip           | ot        |                                                                    |
|           |                                | ✓ Standa      |             | 72 hour      | _ 48 hour                             |                               |                       | Same da          | -       |          |                                              |         |               |          | (02) 99   | 10 6200          | )         | samplereceipt@envirolab.com.au                                     |
| Prior S   | Storage: 🗹 Fr                  | ridge 🗌       | Freezer     | ✓ Esky       | Shelf                                 | Do sam                        | oles co               | ntain '          | potent  | ial' HBI | M? 🗌                                         | No      | ✓ Yes         | (If YE   | S, then h | andle, tr        | ansport a | and store in accordance with FPM HAZID)                            |
|           | Sar                            | mple ID       | _           | pelc         | Sample<br>Type                        | Container<br>Type             |                       |                  |         |          | ,                                            | Analyte | s             |          |           |                  |           |                                                                    |
| Lab<br>ID | Location /<br>Other ID         | Depth<br>From | Depth<br>To | Date Sampled | S - soil<br>W - water<br>M - Material | G - glass<br>P - plastic      | Combo 8a<br>NEPM      | Combo 3a<br>NEPM | Combo 3 | Hd       | CEC                                          | втех    | Asbestos      |          |           |                  |           | Notes/ Preservation/ Additional Requirements                       |
| ,         | BH101                          | 0.4           | 0.5         | 16.7.24      | S                                     | G/P                           |                       | х                |         |          |                                              |         |               |          |           |                  |           |                                                                    |
| 2         | BH102                          | 0.4           | 0.5         | 16.7.24      | S                                     | G/P                           | х                     |                  |         | x        | х                                            |         |               |          |           |                  |           |                                                                    |
| 3         | BH103                          | 0             | 0.1         | 16.7.24      | s                                     | G/P                           | x                     |                  |         |          |                                              |         |               |          |           |                  |           |                                                                    |
| ų         | BH103                          | 0.8           | 1           | 16.7.24      | s                                     | G/P                           |                       | х                |         |          |                                              |         |               | -        |           |                  |           | ENVirolab Services 12 Ashley St                                    |
| 2         | BH104                          | 0.4           | 0.5         | 16.7.24      | S                                     | G/P                           |                       | х                |         |          |                                              |         |               |          |           |                  |           | Job No: 35-7 62) 9910 6230                                         |
| 6         | BH105                          | 0.4           | 0.5         | 16.7.24      | s                                     | G/P                           | х                     |                  |         | ·        |                                              |         |               |          |           |                  |           | Date Received: 19/7/24                                             |
| 7         | BD1                            |               |             | 16.7.24      | s                                     | G/P                           |                       |                  | х       |          |                                              |         |               |          |           |                  |           | Received 8: 1435 Received 8: 1435 Temp CoolAmbient Cooling Icoling |
| 8         | TS                             |               |             |              |                                       |                               |                       |                  |         |          |                                              | х       |               |          |           |                  |           |                                                                    |
| 9         | ТВ                             |               |             |              |                                       |                               |                       |                  |         |          |                                              | х       |               |          |           |                  |           | Security: (intact) Broken/None                                     |
|           | <del> </del>                   |               |             |              | 3                                     |                               |                       |                  |         |          |                                              |         |               |          |           |                  |           |                                                                    |
|           |                                |               |             |              |                                       |                               |                       |                  |         |          |                                              |         |               |          |           |                  |           |                                                                    |
|           |                                |               |             |              |                                       |                               | _                     |                  |         |          |                                              |         |               | ,        |           |                  |           |                                                                    |
|           |                                |               |             |              |                                       |                               |                       |                  |         |          |                                              |         |               |          |           |                  |           |                                                                    |
|           | ·                              |               |             |              |                                       |                               |                       |                  |         |          |                                              |         |               | <u> </u> |           |                  | -         | ·                                                                  |
|           | s to analyse:<br>er of samples | s in cont     | tainer:     | ** ,         |                                       | Transno                       | rted to               | labora           | tory b  | v:       | <u>.                                    </u> |         | <del></del> - | <u></u>  | LAB F     | RECEI<br>ef. No: |           | 02-1                                                               |
|           | results to:                    |               | Partners    |              |                                       | Transported to laboratory by: |                       |                  |         |          |                                              |         |               |          |           | ed by:           |           | y Ware                                                             |
| Addre     |                                |               |             |              | NSW 211                               | Phone:                        | Phone: (02) 9809 0666 |                  |         |          |                                              |         |               |          | Date 8    |                  |           |                                                                    |
|           | uished by:                     | 30 1 10111111 | ago i toda, | -700t Ttyde  |                                       | Date:                         | (02) 00               |                  |         | Signe    | d:                                           |         |               |          | Signed    |                  |           |                                                                    |
|           |                                |               |             |              |                                       |                               |                       |                  |         |          |                                              |         |               |          | ,         |                  |           | -                                                                  |



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

### **SAMPLE RECEIPT ADVICE**

| Client Details |                          |
|----------------|--------------------------|
| Client         | Douglas Partners Pty Ltd |
| Attention      | Paul Gorman              |

| Sample Login Details                 |                      |
|--------------------------------------|----------------------|
| Your reference                       | 224456.00 Sutherland |
| Envirolab Reference                  | 357021               |
| Date Sample Received                 | 19/07/2024           |
| Date Instructions Received           | 19/07/2024           |
| Date Results Expected to be Reported | 26/07/2024           |

| Sample Condition                                       |          |
|--------------------------------------------------------|----------|
| Samples received in appropriate condition for analysis | Yes      |
| No. of Samples Provided                                | 9 Soil   |
| Turnaround Time Requested                              | Standard |
| Temperature on Receipt (°C)                            | 10       |
| Cooling Method                                         | Ice Pack |
| Sampling Date Provided                                 | YES      |

| Comments |  |
|----------|--|
| Nil      |  |

### Please direct any queries to:

| Aileen Hie                   | Jacinta Hurst                  |
|------------------------------|--------------------------------|
| Phone: 02 9910 6200          | Phone: 02 9910 6200            |
| Fax: 02 9910 6201            | Fax: 02 9910 6201              |
| Email: ahie@envirolab.com.au | Email: jhurst@envirolab.com.au |

Analysis Underway, details on the following page:



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

| Sample ID                      | vTRH(C6-C10)/BTEXN in Soil | svTRH (C10-C40) in Soil | PAHs in Soil | Organochlorine Pesticides in soil | Organophosphorus Pesticides in Soil | PCBs in Soil | Misc Soil - Inorg | Acid Extractable metalsin soil | Asbestos ID - soils NEPM | Misc Inorg - Soil | CEC |
|--------------------------------|----------------------------|-------------------------|--------------|-----------------------------------|-------------------------------------|--------------|-------------------|--------------------------------|--------------------------|-------------------|-----|
| BH101-0.4-0.5                  | ✓                          | ✓                       | ✓            |                                   |                                     |              |                   | ✓                              | ✓                        |                   |     |
| BH102-0.4-0.5                  | ✓                          | ✓                       | ✓            | ✓                                 | ✓                                   | ✓            | ✓                 | ✓                              | ✓                        | ✓                 | ✓   |
| BH103-0-0.1                    | ✓                          | ✓                       | ✓            | ✓                                 | ✓                                   | ✓            | ✓                 | ✓                              | ✓                        |                   |     |
| BH103-0.8-1                    | 1                          | 1                       | 1            |                                   |                                     |              |                   | 1                              | 1                        |                   |     |
| D11100-0.0-1                   |                            | 1                       | ٠,           |                                   |                                     |              |                   | , <b>,</b>                     | ٠,                       |                   |     |
| BH104-0.4-0.5                  | ✓                          | ✓                       | <b>√</b>     |                                   |                                     |              |                   | <b>√</b>                       | <b>,</b> ✓               |                   |     |
|                                | <b>√</b>                   | ✓<br>✓                  | 1            | <b>√</b>                          | <b>✓</b>                            | ✓            | <b>✓</b>          |                                |                          |                   |     |
| BH104-0.4-0.5                  | -                          | -                       | ✓            | ✓                                 | ✓                                   | ✓            | ✓                 |                                | ✓                        |                   |     |
| BH104-0.4-0.5<br>BH105-0.4-0.5 | ✓                          | ✓                       | ✓<br>✓       | ✓                                 | ✓                                   | ✓            | ✓                 | √<br>√                         | ✓                        |                   |     |

The 'V' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

### **Additional Info**

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

# Appendix I Data Quality Assurance and Data Quality Control



### 1. Field and laboratory data quality assurance and quality control

The field and laboratory data quality assurance and quality control (QA/QC) procedures and results are summarised in the following Table 1. Reference should be made to the field work methodology and the laboratory results / certificates of analysis for further details. The relative percentage difference (RPD) results, along with the other field QC samples are included in the summary results tables OR at the end of this appendix.

Table 1: Field and laboratory quality control

| Item                                | Evaluation / acceptance criteria                                                  | Compliance |
|-------------------------------------|-----------------------------------------------------------------------------------|------------|
| Analytical laboratories used        | NATA accreditation                                                                | С          |
| Holding times                       | Various, based on type of analysis                                                | С          |
| Intra-laboratory replicates         | 10% of primary soil samples                                                       | С          |
|                                     | <30% RPD                                                                          | PC         |
| Inter-laboratory replicates         | 10% of primary soil samples                                                       | С          |
|                                     | <30% RPD                                                                          | С          |
| Trip spikes                         | 1 per sampling event                                                              | С          |
|                                     | 60-140% recovery                                                                  | С          |
| Trip blanks                         | 1 per sampling event                                                              | С          |
|                                     | <pql< td=""><td>С</td></pql<>                                                     | С          |
| Laboratory / reagent blanks         | 1 per batch; <pql< td=""><td>С</td></pql<>                                        | С          |
| Laboratory duplicate                | 1 per lab batch; As laboratory certificate                                        | С          |
| Matrix spikes                       | 1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)       | С          |
| Surrogate spikes                    | All organics analysis; 70-130% recovery (inorganics); 60-140% recovery (organics) | С          |
| Control samples                     | 1 per lab batch; 70-130% recovery (inorganics); 60-<br>140% recovery (organics)   | С          |
| Standard operating procedures (SOP) | Adopting SOP for all aspects of the sampling field work                           | С          |

Notes

C = compliance; PC = partial compliance; NC = non-compliance



The RPD results were all within the acceptable range, with the exception of copper, lead and zinc indicated in Table QA1 (results in bold). The exceedances are not, however, considered to be of concern given that:

- The actual differences in the concentrations of the replicate pairs where RPD exceedances occurred were typically low;
- The replicate pairs were collected from fill soils which by its nature are heterogeneous;
- Replicates, rather than homogenised duplicates, were used to minimise risk of volatile loss, hence greater analytical variability between replicate pairs can be expected;
- Most of the recorded concentrations were relatively close to the PQL;
- The majority of RPD results from a replicate pair were within the acceptable limits; and
- All other QA / QC parameters met the data quality indicators.

A trip spike and trip blank were taken into the field during the soil sampling. No analytes were recorded above the PQL in the trip blank samples analysed (Table QA2, at the end of this appendix). All results in the trip spike samples were within the acceptable range of recovery (Table QA3, at the end of this Appendix).

No rinsate sample was collected during the limited investigation. Where possible soil samples were collected from recovered materials which had not been in direct contact with drilling equipment. However, all other QA procedures were met and given the results of field trip spike and trip blank and recorded concentrations of analysed samples, it is considered that the non compliance does not impact the reliability of the results.

In summary, the QC data is determined to be of sufficient quality to be considered acceptable for the assessment.

### 2. Data quality indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQI) as outlined in NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013):

- Completeness: a measure of the amount of usable data from a data collection activity;
- Comparability: the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness: the confidence (qualitative) of data representativeness of media present on-site;
- Precision: a measure of variability or reproducibility of data; and
- Accuracy: a measure of closeness of the data to the 'true' value.



**Table 2: Data quality indicators** 

| Data quality indicator | Method(s) of achievement                                                                                                                                                                              |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Completeness           | Systematic and selected target locations sampled.                                                                                                                                                     |
|                        | Preparation of borehole logs, sample location plan and chain of custody records.                                                                                                                      |
|                        | Preparation of field groundwater sampling sheets.                                                                                                                                                     |
|                        | Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody.                                                                      |
|                        | Samples analysed for contaminants of potential concern (COPC) identified in the conceptual site model (CSM).                                                                                          |
|                        | Completion of chain of custody (COC) documentation.                                                                                                                                                   |
|                        | NATA accredited laboratory results certificates provided by the laboratory.                                                                                                                           |
|                        | Satisfactory frequency and results for field and laboratory quality control (QC) samples as discussed in Section 1.                                                                                   |
| Comparability          | Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project.                                                                    |
|                        | Experienced sampler(s) used.                                                                                                                                                                          |
|                        | Use of NATA registered laboratories, with test methods the same or similar between laboratories.                                                                                                      |
|                        | Satisfactory results for field and laboratory QC samples.                                                                                                                                             |
| Representativeness     | Target media sampled.                                                                                                                                                                                 |
|                        | Sample numbers recovered and analysed are considered to be representative of the target media and complying with DQO.                                                                                 |
|                        | Samples were extracted and analysed within holding times.                                                                                                                                             |
|                        | Samples were analysed in accordance with the COC.                                                                                                                                                     |
| Precision              | Field staff followed standard operating procedures.                                                                                                                                                   |
|                        | Acceptable RPD between original samples and replicates.                                                                                                                                               |
|                        | Satisfactory results for all other field and laboratory QC samples.                                                                                                                                   |
| Accuracy               | Field staff followed standard operating procedures.                                                                                                                                                   |
|                        | Satisfactory results for all field and laboratory QC samples.                                                                                                                                         |
|                        | <ul> <li>The laboratory RPD acceptance criteria has been exceeded at<br/>BH102/0.4-0.5, for cu. Therefore, a triplicate result has been<br/>issued as laboratory sample number Triplicate.</li> </ul> |

Based on the above, it is considered that the DQI have been generally complied with.



### 3. Conclusion

Based on the results of the field QA and field and laboratory QC, and evaluation against the DQI it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

### 4. References

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.



# Table QA1: Relative Percentage Difference Results – Soil

|               |           |                |                |                |       | Priority metals |         |                |        |      |                        | PAH    | Priority TRH |           |              |              | втех          |               |         |         |              |               |
|---------------|-----------|----------------|----------------|----------------|-------|-----------------|---------|----------------|--------|------|------------------------|--------|--------------|-----------|--------------|--------------|---------------|---------------|---------|---------|--------------|---------------|
| Lab Report No | Sample ID | Depth          | Sample<br>Date | Sample<br>Type | Units | Total Arsenic   | Cadmium | Total Chromium | Copper | Lead | Mercury<br>(inorganic) | Nickel | Zinc         | Total PAH | TRH C6 - C10 | TRH >C10-C16 | F3 (>C16-C34) | F4 (>C34-C40) | Benzene | Toluene | Ethylbenzene | Total Xylenes |
|               |           |                |                |                |       |                 |         |                |        |      |                        |        |              |           |              |              |               |               |         |         |              |               |
| 357021        | BH102     | 0.4 - 0.5<br>m | 16/07/24       | Soil           | mg/kg | 6               | <0.4    | 13             | 27     | 50   | <0.1                   | 2      | 97           | <0.05     | <25          | <50          | <100          | <100          | <0.2    | <0.5    | <            | <]            |
| 357021        | BD1       | 0 m            | 16/07/24       | Soil           | mg/kg | 6               | <0.4    | 13             | 5      | 17   | <0.1                   | 2      | 17           | <0.05     | <25          | <50          | <100          | <100          | <0.2    | <0.5    | <]           | <]            |
|               |           |                | Difference     |                | mg/kg | 0               | 0       | 0              | 22     | 33   | 0                      | 0      | 80           | 0         | 0            | 0            | 0             | 0             | 0       | 0       | 0            | 0             |
|               |           |                | RPD            |                | %     | 0%              | 0%      | 0%             | 138%   | 99%  | 0%                     | 0%     | 140%         | 0%        | 0%           | 0%           | 0%            | 0%            | 0%      | 0%      | 0%           | 0%            |



# Table QA2: Trip Blank Results

| Sample ID | Sample Date | Media Being<br>Sampled | Sample Type | Units | Benzene | Toluene | Ethylbenzene | o-Xylene | Total Xylenes | Lab Report<br>No |
|-----------|-------------|------------------------|-------------|-------|---------|---------|--------------|----------|---------------|------------------|
| TB        | 16/04/2024  | Soil                   | Soil        | mg/kg | <0.2    | <0.5    | <]           | <]       | <]            | 357021           |

# Table QA3: Trip Spike Results (% Recovery)

|           |             |                        |             |         |         | BTEX         |          |               |                  |
|-----------|-------------|------------------------|-------------|---------|---------|--------------|----------|---------------|------------------|
| Sample ID | Sample Date | Media Being<br>Sampled | Sample Type | Benzene | Toluene | Ethylbenzene | o-Xylene | Total Xylenes | Lab Report<br>No |
| TS        | 16/04/2024  | Soil                   | Soil        | 113     | 113     | 113          | 113      | 113           | 357021           |